Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New findings implicate cell size controls in a variety of diseases

26.11.2003


Basic research into a tumor suppressor gene that controls cell size has uncovered a link between three different genetic diseases and points to a possible treatment for all of them.



The tie that binds these three seemingly disparate medical conditions is a biochemical chain of events that govern cell size. At the end of this chain, a known drug may work to replace missing or broken parts of the biochemical chain.

"We were doing basic cell biology, investigating how cell growth is coordinated with the cell’s energy level," said Kun-Liang Guan, research professor at the University of Michigan Life Sciences Institute. "We found this story that connects all these things together in a logical manner."


Guan, who is also a professor of biological chemistry and a MacArthur Foundation fellow, and postdoctoral fellow Ken Inoki have been investigating the general question of how cell growth is regulated because it can be a factor in cancerous cell growth.

In a study published in the Nov. 26 edition of Cell, the researchers describe how a cell growth regulator gene called TSC2 responds to different levels of available energy, such as the sugar glucose. As expected, they found that TSC2 activity is stepped up in response to energy starvation, which means the cell’s growth rate is being slowed to accommodate the less favorable growing conditions.

TSC1 and TSC2 take their name from a kind of tumor. Tuberous sclerosis is a genetic disease in which benign tumors may grow in the brain and nervous system throughout a person’s life. Its severity can range from learning disabilities and epilepsy to severe mental retardation and uncontrollable seizures. There is no cure for tuberous sclerosis, but symptoms may be treated with medications to control seizures and behavior problems.

The genes TSC1 and TSC2 make two proteins that bind together to form a complex which helps control a cell’s growth and its final size. A defect in either gene can lead to tuberous sclerosis.

In watching how the cell responded to energy shortages, the Guan lab identified a molecule called AMPK that makes TSC2 work harder in starvation conditions.

Though it wasn’t known previously that AMPK was performing this function, the molecule had earlier been implicated in Wolf-Parkinson-White Syndrome, a genetic disease marked by problems in the electrical circuitry of the heart muscle and cardiac hypertrophy, an abnormally enlarged heart.

Upstream in the biochemical reaction from AMPK is another molecule known as LKB1, which was identified by other researchers. Defects in LKB1 are associated with Peutz-Jagers Syndrome, in which benign polyps proliferate in the intestines and stomach, and dark pigmentation appears around the mouth, eyes and nostrils of children under 5.

Guan earlier established that the TSC complex’s job is to limit the activity of a molecule called mTOR, which is a key player in cell growth, protein-making and viability. Now, it’s clear that these other molecules act upstream of mTOR, and that a defect in each of them means a different disease.

Taken together, the chain of events is now known to work like this:
More LKB1 means more AMPK. That means more TSC2, and that, in turn, means less mTOR, which has the result of limiting cell growth. Knock out any of those elements upstream from mTOR, and you have the opposite effect---more cell growth.

This is where Guan scoots forward in his chair excitedly. He recently learned that researchers at the Cincinnati Children’s Hospital are experimenting with the drug Rapamycin to regulate mTOR activity. He has to wonder: what if Rapamycin, which has FDA approval for use as an anti-rejection drug in organ transplants, could also be used to treat these genetic syndromes?

That is, if somebody has a genetic disorder because their AMPK or LKB is missing or malformed, could the role of regulating mTOR be replaced by the drug?

That’s the next question Guan and his team will turn to, working with their Life Sciences Institute colleagues. Guan wants to collaborate with LSI geneticist David Ginsburg on developing mice that mimic the genetic disorders so that further study can be done on the biochemical chain of events. And Guan wants to connect with LSI cell biologist Daniel Klionsky to look for parallels between this mammalian version of TOR (mTOR), and a molecule Klionsky studies in yeast called just TOR which performs similar functions.

"It will be great to have Dan as my neighbor," said Guan, whose office is just steps away from Klionsky’s on the sixth floor of the new LSI. "This is the sort of thing this institute is all about."


The paper is "TSC2 Mediates Cellular Energy Response to Control Cell Growth and Survival," Ken Inoki, Tianqing Zhu and Kun-Liang Guan, Cell, Vol. 115, Nov. 26, 2003.

Karl Leif Bates | EurekAlert!
Further information:
http://www.lsi.umich.edu
http://www.lifesciences.umich.edu/institute/labs/guan/
http://www.umich.edu/news

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>