Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New findings implicate cell size controls in a variety of diseases

26.11.2003


Basic research into a tumor suppressor gene that controls cell size has uncovered a link between three different genetic diseases and points to a possible treatment for all of them.



The tie that binds these three seemingly disparate medical conditions is a biochemical chain of events that govern cell size. At the end of this chain, a known drug may work to replace missing or broken parts of the biochemical chain.

"We were doing basic cell biology, investigating how cell growth is coordinated with the cell’s energy level," said Kun-Liang Guan, research professor at the University of Michigan Life Sciences Institute. "We found this story that connects all these things together in a logical manner."


Guan, who is also a professor of biological chemistry and a MacArthur Foundation fellow, and postdoctoral fellow Ken Inoki have been investigating the general question of how cell growth is regulated because it can be a factor in cancerous cell growth.

In a study published in the Nov. 26 edition of Cell, the researchers describe how a cell growth regulator gene called TSC2 responds to different levels of available energy, such as the sugar glucose. As expected, they found that TSC2 activity is stepped up in response to energy starvation, which means the cell’s growth rate is being slowed to accommodate the less favorable growing conditions.

TSC1 and TSC2 take their name from a kind of tumor. Tuberous sclerosis is a genetic disease in which benign tumors may grow in the brain and nervous system throughout a person’s life. Its severity can range from learning disabilities and epilepsy to severe mental retardation and uncontrollable seizures. There is no cure for tuberous sclerosis, but symptoms may be treated with medications to control seizures and behavior problems.

The genes TSC1 and TSC2 make two proteins that bind together to form a complex which helps control a cell’s growth and its final size. A defect in either gene can lead to tuberous sclerosis.

In watching how the cell responded to energy shortages, the Guan lab identified a molecule called AMPK that makes TSC2 work harder in starvation conditions.

Though it wasn’t known previously that AMPK was performing this function, the molecule had earlier been implicated in Wolf-Parkinson-White Syndrome, a genetic disease marked by problems in the electrical circuitry of the heart muscle and cardiac hypertrophy, an abnormally enlarged heart.

Upstream in the biochemical reaction from AMPK is another molecule known as LKB1, which was identified by other researchers. Defects in LKB1 are associated with Peutz-Jagers Syndrome, in which benign polyps proliferate in the intestines and stomach, and dark pigmentation appears around the mouth, eyes and nostrils of children under 5.

Guan earlier established that the TSC complex’s job is to limit the activity of a molecule called mTOR, which is a key player in cell growth, protein-making and viability. Now, it’s clear that these other molecules act upstream of mTOR, and that a defect in each of them means a different disease.

Taken together, the chain of events is now known to work like this:
More LKB1 means more AMPK. That means more TSC2, and that, in turn, means less mTOR, which has the result of limiting cell growth. Knock out any of those elements upstream from mTOR, and you have the opposite effect---more cell growth.

This is where Guan scoots forward in his chair excitedly. He recently learned that researchers at the Cincinnati Children’s Hospital are experimenting with the drug Rapamycin to regulate mTOR activity. He has to wonder: what if Rapamycin, which has FDA approval for use as an anti-rejection drug in organ transplants, could also be used to treat these genetic syndromes?

That is, if somebody has a genetic disorder because their AMPK or LKB is missing or malformed, could the role of regulating mTOR be replaced by the drug?

That’s the next question Guan and his team will turn to, working with their Life Sciences Institute colleagues. Guan wants to collaborate with LSI geneticist David Ginsburg on developing mice that mimic the genetic disorders so that further study can be done on the biochemical chain of events. And Guan wants to connect with LSI cell biologist Daniel Klionsky to look for parallels between this mammalian version of TOR (mTOR), and a molecule Klionsky studies in yeast called just TOR which performs similar functions.

"It will be great to have Dan as my neighbor," said Guan, whose office is just steps away from Klionsky’s on the sixth floor of the new LSI. "This is the sort of thing this institute is all about."


The paper is "TSC2 Mediates Cellular Energy Response to Control Cell Growth and Survival," Ken Inoki, Tianqing Zhu and Kun-Liang Guan, Cell, Vol. 115, Nov. 26, 2003.

Karl Leif Bates | EurekAlert!
Further information:
http://www.lsi.umich.edu
http://www.lifesciences.umich.edu/institute/labs/guan/
http://www.umich.edu/news

More articles from Health and Medicine:

nachricht Malaria Already Endemic in the Mediterranean by the Roman Period
27.07.2017 | Universität Zürich

nachricht Serious children’s infections also spreading in Switzerland
26.07.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>