Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Natural Protein Analog May Fix Insulin-Making Cells Isolated From the Human Pancreas

21.11.2003

For decades, doctors have known that patients who develop higher than normal blood sugar eventually require medication and ultimately need to take insulin, having progressed to what is known as Type 2, or adult-onset diabetes. So when a natural protein analog known as GLP-1 was found to lower blood sugar levels in laboratory mice, researchers began investigating its effectiveness in diabetes patients in clinical trials. Once again, they found that GLP-1 lowered blood sugar and increased insulin production in patients with Type 2 diabetes. But just how GLP-1 pushes cells to produce more insulin has only been partially understood.

Now, laboratory research conducted at Cedars-Sinai Medical Center has shown that GLP-1 not only stimulates the insulin-making capacity of islet cells in the pancreas, but that the compound actually makes new insulin, increases the growth of new islet cells and prevents overworked islets from dying prematurely. The study, reported in the December issue of the journal, Endocrinology, (available on-line at http://endo.endojournals.org) is the first lab study to apply GLP-1 directly to freshly isolated human islet cells and suggests that GLP-1 may be useful to delay or prevent the onset of Type 2 diabetes.

"Our study shows that GLP-1 is the first compound to actually generate new insulin," said Riccardo Perfetti, M.D., Ph.D., and Director of the outpatient Diabetes Program at Cedars-Sinai Medical Center. "In other words, it doesn’t just deplete the islet cell by making it work harder to produce more insulin, but it actually fixes the cell’s engine."

Insulin, a hormone that controls blood glucose levels, is made by islet cells in the pancreas. But when the islet cells begin to fail, not enough insulin is produced, causing blood sugar levels to get too high. This in turn, causes the islet cells to work harder to produce more insulin, ultimately stressing the cells and causing them to die.

But earlier research had shown that GLP-1 increased insulin production and slowed the rate that islet cells died in laboratory mice, which prompted the researchers at Cedars-Sinai to find out whether GLP-1 could actually preserve the function and viability of actual human islets. They found that GLP-1 worked by delaying damage to the human islets’ structure and that the life-span of the cells were significantly increased.

"We found that the islet cells were more efficient when treated with GLP-1, because it prompted them to make insulin only when it was needed," said Dr. Perfetti.

In the study, two groups of islets were isolated from the human pancreas and cultured in the laboratory for five days. One group was treated with GLP-1 every 12 hours, while the other group served as a control and was not treated with GLP-1. Glucose was added to the islet cultures at the end of the first, third and fifth day of the study and a test was performed to measure the amount of insulin secreted by the cells.

During the five days that the cells were studied, the investigators found that the islets in both groups maintained their shape and structural integrity for one day. However, a progressive loss to the structure of the cell and the numbers of actual cells was observed among islets not treated with GLP-1, with the number of viable cells reduced by 45 percent by day five of the study. Alternatively, the islets treated with GLP-1, were able to maintain their shape and structural integrity for a longer period of time, with only a 15 percent reduction in viable cells by the end of day five.

"This shows that the addition of GLP-1 had a significant effect on cell viability and inhibited the structural deterioration that is characteristic of cells that are dying," said Dr. Perfetti.

To find out whether GLP-1 was effective to slow down the rate that the islet cells died, the investigators used a specialized staining technique to see how many viable cells remained by day five - or the last day of the study. They found that time was a major factor in both the treated and untreated islets, but that GLP-1 treated cells lived longer, with about 15.5 percent of the untreated cells having died at day 3 as compared to 6.1 percent in the GLP-1 treated cell cultures. On day five of the study, 18.9% of the untreated cells had died, while cell death occurred in only 8.9% of the GLP-1 treated cells.

In addition, when the investigators added glucose to the islet cell cultures to determine whether GLP-1 would stimulate the cells to secrete insulin, they found that GLP-1 treated cells were more sensitive to glucose and secreted more insulin than the untreated islet cells.

"All together, this study shows that GLP-1’s ability to prevent islet cells from dying could possibly be used to prevent Type 2 diabetes," said Dr. Perfetti.

This study was sponsored by the Max Factor Family Foundation.

Cedars-Sinai Medical Center is one of the largest non-profit academic medical centers in the Western United States. For the fifth straight two-year period, Cedars-Sinai has been named Southern California’s gold standard in health care in an independent survey. Cedars-Sinai is internationally renowned for its diagnostic and treatment capabilities and its broad spectrum of programs and services, as well as breakthrough in biomedical research and superlative medical education. Named one of the 100 "Most Wired" hospitals in health care in 2001, the Medical Center ranks among the top 10 non-university hospitals in the nation for its research activities.

Sandy Van | Van Communications
Further information:
http://www.cshs.org

More articles from Health and Medicine:

nachricht The end of pneumonia? New vaccine offers hope
23.10.2017 | University at Buffalo

nachricht Scientists track ovarian cancers to site of origin: Fallopian tubes
23.10.2017 | Johns Hopkins Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>