Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Natural Protein Analog May Fix Insulin-Making Cells Isolated From the Human Pancreas

21.11.2003

For decades, doctors have known that patients who develop higher than normal blood sugar eventually require medication and ultimately need to take insulin, having progressed to what is known as Type 2, or adult-onset diabetes. So when a natural protein analog known as GLP-1 was found to lower blood sugar levels in laboratory mice, researchers began investigating its effectiveness in diabetes patients in clinical trials. Once again, they found that GLP-1 lowered blood sugar and increased insulin production in patients with Type 2 diabetes. But just how GLP-1 pushes cells to produce more insulin has only been partially understood.

Now, laboratory research conducted at Cedars-Sinai Medical Center has shown that GLP-1 not only stimulates the insulin-making capacity of islet cells in the pancreas, but that the compound actually makes new insulin, increases the growth of new islet cells and prevents overworked islets from dying prematurely. The study, reported in the December issue of the journal, Endocrinology, (available on-line at http://endo.endojournals.org) is the first lab study to apply GLP-1 directly to freshly isolated human islet cells and suggests that GLP-1 may be useful to delay or prevent the onset of Type 2 diabetes.

"Our study shows that GLP-1 is the first compound to actually generate new insulin," said Riccardo Perfetti, M.D., Ph.D., and Director of the outpatient Diabetes Program at Cedars-Sinai Medical Center. "In other words, it doesn’t just deplete the islet cell by making it work harder to produce more insulin, but it actually fixes the cell’s engine."

Insulin, a hormone that controls blood glucose levels, is made by islet cells in the pancreas. But when the islet cells begin to fail, not enough insulin is produced, causing blood sugar levels to get too high. This in turn, causes the islet cells to work harder to produce more insulin, ultimately stressing the cells and causing them to die.

But earlier research had shown that GLP-1 increased insulin production and slowed the rate that islet cells died in laboratory mice, which prompted the researchers at Cedars-Sinai to find out whether GLP-1 could actually preserve the function and viability of actual human islets. They found that GLP-1 worked by delaying damage to the human islets’ structure and that the life-span of the cells were significantly increased.

"We found that the islet cells were more efficient when treated with GLP-1, because it prompted them to make insulin only when it was needed," said Dr. Perfetti.

In the study, two groups of islets were isolated from the human pancreas and cultured in the laboratory for five days. One group was treated with GLP-1 every 12 hours, while the other group served as a control and was not treated with GLP-1. Glucose was added to the islet cultures at the end of the first, third and fifth day of the study and a test was performed to measure the amount of insulin secreted by the cells.

During the five days that the cells were studied, the investigators found that the islets in both groups maintained their shape and structural integrity for one day. However, a progressive loss to the structure of the cell and the numbers of actual cells was observed among islets not treated with GLP-1, with the number of viable cells reduced by 45 percent by day five of the study. Alternatively, the islets treated with GLP-1, were able to maintain their shape and structural integrity for a longer period of time, with only a 15 percent reduction in viable cells by the end of day five.

"This shows that the addition of GLP-1 had a significant effect on cell viability and inhibited the structural deterioration that is characteristic of cells that are dying," said Dr. Perfetti.

To find out whether GLP-1 was effective to slow down the rate that the islet cells died, the investigators used a specialized staining technique to see how many viable cells remained by day five - or the last day of the study. They found that time was a major factor in both the treated and untreated islets, but that GLP-1 treated cells lived longer, with about 15.5 percent of the untreated cells having died at day 3 as compared to 6.1 percent in the GLP-1 treated cell cultures. On day five of the study, 18.9% of the untreated cells had died, while cell death occurred in only 8.9% of the GLP-1 treated cells.

In addition, when the investigators added glucose to the islet cell cultures to determine whether GLP-1 would stimulate the cells to secrete insulin, they found that GLP-1 treated cells were more sensitive to glucose and secreted more insulin than the untreated islet cells.

"All together, this study shows that GLP-1’s ability to prevent islet cells from dying could possibly be used to prevent Type 2 diabetes," said Dr. Perfetti.

This study was sponsored by the Max Factor Family Foundation.

Cedars-Sinai Medical Center is one of the largest non-profit academic medical centers in the Western United States. For the fifth straight two-year period, Cedars-Sinai has been named Southern California’s gold standard in health care in an independent survey. Cedars-Sinai is internationally renowned for its diagnostic and treatment capabilities and its broad spectrum of programs and services, as well as breakthrough in biomedical research and superlative medical education. Named one of the 100 "Most Wired" hospitals in health care in 2001, the Medical Center ranks among the top 10 non-university hospitals in the nation for its research activities.

Sandy Van | Van Communications
Further information:
http://www.cshs.org

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>