Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Natural Protein Analog May Fix Insulin-Making Cells Isolated From the Human Pancreas

21.11.2003

For decades, doctors have known that patients who develop higher than normal blood sugar eventually require medication and ultimately need to take insulin, having progressed to what is known as Type 2, or adult-onset diabetes. So when a natural protein analog known as GLP-1 was found to lower blood sugar levels in laboratory mice, researchers began investigating its effectiveness in diabetes patients in clinical trials. Once again, they found that GLP-1 lowered blood sugar and increased insulin production in patients with Type 2 diabetes. But just how GLP-1 pushes cells to produce more insulin has only been partially understood.

Now, laboratory research conducted at Cedars-Sinai Medical Center has shown that GLP-1 not only stimulates the insulin-making capacity of islet cells in the pancreas, but that the compound actually makes new insulin, increases the growth of new islet cells and prevents overworked islets from dying prematurely. The study, reported in the December issue of the journal, Endocrinology, (available on-line at http://endo.endojournals.org) is the first lab study to apply GLP-1 directly to freshly isolated human islet cells and suggests that GLP-1 may be useful to delay or prevent the onset of Type 2 diabetes.

"Our study shows that GLP-1 is the first compound to actually generate new insulin," said Riccardo Perfetti, M.D., Ph.D., and Director of the outpatient Diabetes Program at Cedars-Sinai Medical Center. "In other words, it doesn’t just deplete the islet cell by making it work harder to produce more insulin, but it actually fixes the cell’s engine."

Insulin, a hormone that controls blood glucose levels, is made by islet cells in the pancreas. But when the islet cells begin to fail, not enough insulin is produced, causing blood sugar levels to get too high. This in turn, causes the islet cells to work harder to produce more insulin, ultimately stressing the cells and causing them to die.

But earlier research had shown that GLP-1 increased insulin production and slowed the rate that islet cells died in laboratory mice, which prompted the researchers at Cedars-Sinai to find out whether GLP-1 could actually preserve the function and viability of actual human islets. They found that GLP-1 worked by delaying damage to the human islets’ structure and that the life-span of the cells were significantly increased.

"We found that the islet cells were more efficient when treated with GLP-1, because it prompted them to make insulin only when it was needed," said Dr. Perfetti.

In the study, two groups of islets were isolated from the human pancreas and cultured in the laboratory for five days. One group was treated with GLP-1 every 12 hours, while the other group served as a control and was not treated with GLP-1. Glucose was added to the islet cultures at the end of the first, third and fifth day of the study and a test was performed to measure the amount of insulin secreted by the cells.

During the five days that the cells were studied, the investigators found that the islets in both groups maintained their shape and structural integrity for one day. However, a progressive loss to the structure of the cell and the numbers of actual cells was observed among islets not treated with GLP-1, with the number of viable cells reduced by 45 percent by day five of the study. Alternatively, the islets treated with GLP-1, were able to maintain their shape and structural integrity for a longer period of time, with only a 15 percent reduction in viable cells by the end of day five.

"This shows that the addition of GLP-1 had a significant effect on cell viability and inhibited the structural deterioration that is characteristic of cells that are dying," said Dr. Perfetti.

To find out whether GLP-1 was effective to slow down the rate that the islet cells died, the investigators used a specialized staining technique to see how many viable cells remained by day five - or the last day of the study. They found that time was a major factor in both the treated and untreated islets, but that GLP-1 treated cells lived longer, with about 15.5 percent of the untreated cells having died at day 3 as compared to 6.1 percent in the GLP-1 treated cell cultures. On day five of the study, 18.9% of the untreated cells had died, while cell death occurred in only 8.9% of the GLP-1 treated cells.

In addition, when the investigators added glucose to the islet cell cultures to determine whether GLP-1 would stimulate the cells to secrete insulin, they found that GLP-1 treated cells were more sensitive to glucose and secreted more insulin than the untreated islet cells.

"All together, this study shows that GLP-1’s ability to prevent islet cells from dying could possibly be used to prevent Type 2 diabetes," said Dr. Perfetti.

This study was sponsored by the Max Factor Family Foundation.

Cedars-Sinai Medical Center is one of the largest non-profit academic medical centers in the Western United States. For the fifth straight two-year period, Cedars-Sinai has been named Southern California’s gold standard in health care in an independent survey. Cedars-Sinai is internationally renowned for its diagnostic and treatment capabilities and its broad spectrum of programs and services, as well as breakthrough in biomedical research and superlative medical education. Named one of the 100 "Most Wired" hospitals in health care in 2001, the Medical Center ranks among the top 10 non-university hospitals in the nation for its research activities.

Sandy Van | Van Communications
Further information:
http://www.cshs.org

More articles from Health and Medicine:

nachricht Nanoparticles as a Solution against Antibiotic Resistance?
15.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Error-free into the Quantum Computer Age

A study carried out by an international team of researchers and published in the journal Physical Review X shows that ion-trap technologies available today are suitable for building large-scale quantum computers. The scientists introduce trapped-ion quantum error correction protocols that detect and correct processing errors.

In order to reach their full potential, today’s quantum computer prototypes have to meet specific criteria: First, they have to be made bigger, which means...

Im Focus: Search for planets with Carmenes successful

German and Spanish researchers plan, build and use modern spectrograph

Since 2016, German and Spanish researchers, among them scientists from the University of Göttingen, have been hunting for exoplanets with the “Carmenes”...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

The body's street sweepers

18.12.2017 | Life Sciences

Fast flowing heat in layered material heterostructures

18.12.2017 | Materials Sciences

Life on the edge prepares plants for climate change

18.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>