Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breast cancer susceptibility genes play role in DNA repair

21.11.2003


A study led by scientists at The Wistar Institute defines a functional role for the tumor suppressor proteins BRCA1 and BRCA2 in breast cancer. The findings, presented in November issue of the journal Molecular Cell, also identify a number of novel proteins that work alongside BRCA1 and BRCA2 and might also play a part in breast cancer. These proteins offer an important set of new targets for possible anti-cancer drugs.



The link between the BRCA1 and BRCA2 genes and hereditary breast cancer was first identified in the early 1990s, but the biological function of the BRCA1 and BRCA2 proteins has remained elusive. The Wistar researchers demonstrated how the two proteins combine with others to form a complex called BRCC (BRCA1- and BRCA2-containing complex) and defined the role of the complex in regulating DNA repair. The researchers also discovered two new proteins that are part of BRCC and linked one of them, BRCC36, to sporadic breast cancers.

"We know that BRCA1 and BRCA2 are normally tumor suppressor genes that, when mutated, can lead to cancer, but they only account for a fifth of all hereditary breast cancers and about five percent of breast cancers overall" Ramin Shiekhattar, Ph.D., an associate professor at The Wistar Institute and senior author on the study. "The BRCC36 gene and the other genes that factor into the creation of the BRCC complex are good candidates for additional breast cancer susceptibility genes."


Shiekhattar and his colleagues determined that the BRCC protein complex acts as one large regulatory enzyme. They discovered that one target of BRCC is a protein familiar to cancer researchers called p53, a potential cancer-promoter if left unregulated. BRCC attaches a chemical tag, a ubiquitin group, to p53. The ubiquitin tag signals the cell’s digestive machinery to destroy the marked protein.

Following treatment of cells with DNA-damaging radiation, BRCC interacted with p53 and, to a lesser degree, a known DNA repair enzyme. According to the Wistar researchers, this suggests that BRCC does not directly repair DNA. Instead, BRCC appears to regulate the proteins that cause the cell to divide and influence the proteins that repair DNA.

"In essence, BRCC puts the brakes to the cell’s life cycle to allow DNA repair to commence before cell division," said Shiekhattar. "When this goes well, life proceeds normally. Without this braking function, the cell will continue to grow and divide without control."

To study how BRCA1 functioned in the cell, Shiekhattar and his colleagues created a line of cells that produce a specially tagged version of BARD1 – a protein known to interact with BRCA1. The tag allowed Shiekhattar to isolate BARD1 and any protein found with it. When they found the tag attached to a large complex of proteins, mass spectrometric sequencing allowed them to determine and isolate the individual parts of the complex.

"We showed that cells without functioning BRCC exhibit a tendency to become cancerous," says Shiekhattar. "So what we have here is a case of guilt by association, as the proteins essential for BRCC function are all likely suspects for cancer susceptibility,"

Among the proteins caught in this molecular dragnet, were BRCA2 – indicating that BRCA2 worked directly with BRCA1 in cells – and two new BRCC subunits. Shiekhattar and his colleagues learned that disrupting the function of the new subunits, named RCC36 and BRCC45, made cells mores susceptible to DNA damage from ionizing radiation and interfered with the ability of BRCC to halt the cell cycle at the checkpoint before cell division.

Shiekhattar and his colleagues found that certain sporadic breast tumors featured a profound increase in the amounts of BRCC36 protein. "While the mechanism isn’t quite clear, it might mean that too much BRCC36 somehow disrupts the function of BRCC," says Shiekhattar.

Many women with family histories of breast cancer already benefit from genetic testing. With more information on the causes of both hereditary and sporadic breast cancer, researchers hope to create better testing techniques and define possible targets for therapeutics.

The lead author on the Molecular Cell study is Yuanshu Dong, Ph.D., at The Wistar Institute. Wistar researchers Mohamed-Ali Hakimi, Ph.D., Easwari Kumaraswamy, Ph.D., and Neil S. Cooch, Ph.D., also contributed to the study. Co-authors Andrew K. Goodwin, Ph.D. and Xiaowei Chen, Ph.D. are from The Fox Chase Cancer Center.


This research was supported in part by grants from the Breast Cancer Research Foundation, the National Institutes of Health, the American Cancer Society, and the U.S. Army Medical Research and Materiel Command.

The Wistar Institute is an independent nonprofit biomedical research institution dedicated to discovering the causes and cures for major diseases, including cancer, cardiovascular disease, autoimmune disorders, and infectious diseases. Founded in 1892 as the first institution of its kind in the nation, The Wistar Institute today is a National Cancer Institute-designated Cancer Center – one of only eight focused on basic research. Discoveries at Wistar have led to the development of vaccines for such diseases as rabies and rubella, the identification of genes associated with breast, lung, and prostate cancer, and the development of monoclonal antibodies and other significant research technologies and tools.

Franklin Hoke | EurekAlert!
Further information:
http://www.wistar.upenn.edu

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>