Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breast cancer susceptibility genes play role in DNA repair

21.11.2003


A study led by scientists at The Wistar Institute defines a functional role for the tumor suppressor proteins BRCA1 and BRCA2 in breast cancer. The findings, presented in November issue of the journal Molecular Cell, also identify a number of novel proteins that work alongside BRCA1 and BRCA2 and might also play a part in breast cancer. These proteins offer an important set of new targets for possible anti-cancer drugs.



The link between the BRCA1 and BRCA2 genes and hereditary breast cancer was first identified in the early 1990s, but the biological function of the BRCA1 and BRCA2 proteins has remained elusive. The Wistar researchers demonstrated how the two proteins combine with others to form a complex called BRCC (BRCA1- and BRCA2-containing complex) and defined the role of the complex in regulating DNA repair. The researchers also discovered two new proteins that are part of BRCC and linked one of them, BRCC36, to sporadic breast cancers.

"We know that BRCA1 and BRCA2 are normally tumor suppressor genes that, when mutated, can lead to cancer, but they only account for a fifth of all hereditary breast cancers and about five percent of breast cancers overall" Ramin Shiekhattar, Ph.D., an associate professor at The Wistar Institute and senior author on the study. "The BRCC36 gene and the other genes that factor into the creation of the BRCC complex are good candidates for additional breast cancer susceptibility genes."


Shiekhattar and his colleagues determined that the BRCC protein complex acts as one large regulatory enzyme. They discovered that one target of BRCC is a protein familiar to cancer researchers called p53, a potential cancer-promoter if left unregulated. BRCC attaches a chemical tag, a ubiquitin group, to p53. The ubiquitin tag signals the cell’s digestive machinery to destroy the marked protein.

Following treatment of cells with DNA-damaging radiation, BRCC interacted with p53 and, to a lesser degree, a known DNA repair enzyme. According to the Wistar researchers, this suggests that BRCC does not directly repair DNA. Instead, BRCC appears to regulate the proteins that cause the cell to divide and influence the proteins that repair DNA.

"In essence, BRCC puts the brakes to the cell’s life cycle to allow DNA repair to commence before cell division," said Shiekhattar. "When this goes well, life proceeds normally. Without this braking function, the cell will continue to grow and divide without control."

To study how BRCA1 functioned in the cell, Shiekhattar and his colleagues created a line of cells that produce a specially tagged version of BARD1 – a protein known to interact with BRCA1. The tag allowed Shiekhattar to isolate BARD1 and any protein found with it. When they found the tag attached to a large complex of proteins, mass spectrometric sequencing allowed them to determine and isolate the individual parts of the complex.

"We showed that cells without functioning BRCC exhibit a tendency to become cancerous," says Shiekhattar. "So what we have here is a case of guilt by association, as the proteins essential for BRCC function are all likely suspects for cancer susceptibility,"

Among the proteins caught in this molecular dragnet, were BRCA2 – indicating that BRCA2 worked directly with BRCA1 in cells – and two new BRCC subunits. Shiekhattar and his colleagues learned that disrupting the function of the new subunits, named RCC36 and BRCC45, made cells mores susceptible to DNA damage from ionizing radiation and interfered with the ability of BRCC to halt the cell cycle at the checkpoint before cell division.

Shiekhattar and his colleagues found that certain sporadic breast tumors featured a profound increase in the amounts of BRCC36 protein. "While the mechanism isn’t quite clear, it might mean that too much BRCC36 somehow disrupts the function of BRCC," says Shiekhattar.

Many women with family histories of breast cancer already benefit from genetic testing. With more information on the causes of both hereditary and sporadic breast cancer, researchers hope to create better testing techniques and define possible targets for therapeutics.

The lead author on the Molecular Cell study is Yuanshu Dong, Ph.D., at The Wistar Institute. Wistar researchers Mohamed-Ali Hakimi, Ph.D., Easwari Kumaraswamy, Ph.D., and Neil S. Cooch, Ph.D., also contributed to the study. Co-authors Andrew K. Goodwin, Ph.D. and Xiaowei Chen, Ph.D. are from The Fox Chase Cancer Center.


This research was supported in part by grants from the Breast Cancer Research Foundation, the National Institutes of Health, the American Cancer Society, and the U.S. Army Medical Research and Materiel Command.

The Wistar Institute is an independent nonprofit biomedical research institution dedicated to discovering the causes and cures for major diseases, including cancer, cardiovascular disease, autoimmune disorders, and infectious diseases. Founded in 1892 as the first institution of its kind in the nation, The Wistar Institute today is a National Cancer Institute-designated Cancer Center – one of only eight focused on basic research. Discoveries at Wistar have led to the development of vaccines for such diseases as rabies and rubella, the identification of genes associated with breast, lung, and prostate cancer, and the development of monoclonal antibodies and other significant research technologies and tools.

Franklin Hoke | EurekAlert!
Further information:
http://www.wistar.upenn.edu

More articles from Health and Medicine:

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>