Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breast cancer susceptibility genes play role in DNA repair

21.11.2003


A study led by scientists at The Wistar Institute defines a functional role for the tumor suppressor proteins BRCA1 and BRCA2 in breast cancer. The findings, presented in November issue of the journal Molecular Cell, also identify a number of novel proteins that work alongside BRCA1 and BRCA2 and might also play a part in breast cancer. These proteins offer an important set of new targets for possible anti-cancer drugs.



The link between the BRCA1 and BRCA2 genes and hereditary breast cancer was first identified in the early 1990s, but the biological function of the BRCA1 and BRCA2 proteins has remained elusive. The Wistar researchers demonstrated how the two proteins combine with others to form a complex called BRCC (BRCA1- and BRCA2-containing complex) and defined the role of the complex in regulating DNA repair. The researchers also discovered two new proteins that are part of BRCC and linked one of them, BRCC36, to sporadic breast cancers.

"We know that BRCA1 and BRCA2 are normally tumor suppressor genes that, when mutated, can lead to cancer, but they only account for a fifth of all hereditary breast cancers and about five percent of breast cancers overall" Ramin Shiekhattar, Ph.D., an associate professor at The Wistar Institute and senior author on the study. "The BRCC36 gene and the other genes that factor into the creation of the BRCC complex are good candidates for additional breast cancer susceptibility genes."


Shiekhattar and his colleagues determined that the BRCC protein complex acts as one large regulatory enzyme. They discovered that one target of BRCC is a protein familiar to cancer researchers called p53, a potential cancer-promoter if left unregulated. BRCC attaches a chemical tag, a ubiquitin group, to p53. The ubiquitin tag signals the cell’s digestive machinery to destroy the marked protein.

Following treatment of cells with DNA-damaging radiation, BRCC interacted with p53 and, to a lesser degree, a known DNA repair enzyme. According to the Wistar researchers, this suggests that BRCC does not directly repair DNA. Instead, BRCC appears to regulate the proteins that cause the cell to divide and influence the proteins that repair DNA.

"In essence, BRCC puts the brakes to the cell’s life cycle to allow DNA repair to commence before cell division," said Shiekhattar. "When this goes well, life proceeds normally. Without this braking function, the cell will continue to grow and divide without control."

To study how BRCA1 functioned in the cell, Shiekhattar and his colleagues created a line of cells that produce a specially tagged version of BARD1 – a protein known to interact with BRCA1. The tag allowed Shiekhattar to isolate BARD1 and any protein found with it. When they found the tag attached to a large complex of proteins, mass spectrometric sequencing allowed them to determine and isolate the individual parts of the complex.

"We showed that cells without functioning BRCC exhibit a tendency to become cancerous," says Shiekhattar. "So what we have here is a case of guilt by association, as the proteins essential for BRCC function are all likely suspects for cancer susceptibility,"

Among the proteins caught in this molecular dragnet, were BRCA2 – indicating that BRCA2 worked directly with BRCA1 in cells – and two new BRCC subunits. Shiekhattar and his colleagues learned that disrupting the function of the new subunits, named RCC36 and BRCC45, made cells mores susceptible to DNA damage from ionizing radiation and interfered with the ability of BRCC to halt the cell cycle at the checkpoint before cell division.

Shiekhattar and his colleagues found that certain sporadic breast tumors featured a profound increase in the amounts of BRCC36 protein. "While the mechanism isn’t quite clear, it might mean that too much BRCC36 somehow disrupts the function of BRCC," says Shiekhattar.

Many women with family histories of breast cancer already benefit from genetic testing. With more information on the causes of both hereditary and sporadic breast cancer, researchers hope to create better testing techniques and define possible targets for therapeutics.

The lead author on the Molecular Cell study is Yuanshu Dong, Ph.D., at The Wistar Institute. Wistar researchers Mohamed-Ali Hakimi, Ph.D., Easwari Kumaraswamy, Ph.D., and Neil S. Cooch, Ph.D., also contributed to the study. Co-authors Andrew K. Goodwin, Ph.D. and Xiaowei Chen, Ph.D. are from The Fox Chase Cancer Center.


This research was supported in part by grants from the Breast Cancer Research Foundation, the National Institutes of Health, the American Cancer Society, and the U.S. Army Medical Research and Materiel Command.

The Wistar Institute is an independent nonprofit biomedical research institution dedicated to discovering the causes and cures for major diseases, including cancer, cardiovascular disease, autoimmune disorders, and infectious diseases. Founded in 1892 as the first institution of its kind in the nation, The Wistar Institute today is a National Cancer Institute-designated Cancer Center – one of only eight focused on basic research. Discoveries at Wistar have led to the development of vaccines for such diseases as rabies and rubella, the identification of genes associated with breast, lung, and prostate cancer, and the development of monoclonal antibodies and other significant research technologies and tools.

Franklin Hoke | EurekAlert!
Further information:
http://www.wistar.upenn.edu

More articles from Health and Medicine:

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

nachricht Flexible sensors can detect movement in GI tract
11.10.2017 | Massachusetts Institute of Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Plant escape from waterlogging

17.10.2017 | Life Sciences

Study suggests oysters offer hot spot for reducing nutrient pollution

17.10.2017 | Life Sciences

Breaking: the first light from two neutron stars merging

17.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>