Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breast cancer susceptibility genes play role in DNA repair

21.11.2003


A study led by scientists at The Wistar Institute defines a functional role for the tumor suppressor proteins BRCA1 and BRCA2 in breast cancer. The findings, presented in November issue of the journal Molecular Cell, also identify a number of novel proteins that work alongside BRCA1 and BRCA2 and might also play a part in breast cancer. These proteins offer an important set of new targets for possible anti-cancer drugs.



The link between the BRCA1 and BRCA2 genes and hereditary breast cancer was first identified in the early 1990s, but the biological function of the BRCA1 and BRCA2 proteins has remained elusive. The Wistar researchers demonstrated how the two proteins combine with others to form a complex called BRCC (BRCA1- and BRCA2-containing complex) and defined the role of the complex in regulating DNA repair. The researchers also discovered two new proteins that are part of BRCC and linked one of them, BRCC36, to sporadic breast cancers.

"We know that BRCA1 and BRCA2 are normally tumor suppressor genes that, when mutated, can lead to cancer, but they only account for a fifth of all hereditary breast cancers and about five percent of breast cancers overall" Ramin Shiekhattar, Ph.D., an associate professor at The Wistar Institute and senior author on the study. "The BRCC36 gene and the other genes that factor into the creation of the BRCC complex are good candidates for additional breast cancer susceptibility genes."


Shiekhattar and his colleagues determined that the BRCC protein complex acts as one large regulatory enzyme. They discovered that one target of BRCC is a protein familiar to cancer researchers called p53, a potential cancer-promoter if left unregulated. BRCC attaches a chemical tag, a ubiquitin group, to p53. The ubiquitin tag signals the cell’s digestive machinery to destroy the marked protein.

Following treatment of cells with DNA-damaging radiation, BRCC interacted with p53 and, to a lesser degree, a known DNA repair enzyme. According to the Wistar researchers, this suggests that BRCC does not directly repair DNA. Instead, BRCC appears to regulate the proteins that cause the cell to divide and influence the proteins that repair DNA.

"In essence, BRCC puts the brakes to the cell’s life cycle to allow DNA repair to commence before cell division," said Shiekhattar. "When this goes well, life proceeds normally. Without this braking function, the cell will continue to grow and divide without control."

To study how BRCA1 functioned in the cell, Shiekhattar and his colleagues created a line of cells that produce a specially tagged version of BARD1 – a protein known to interact with BRCA1. The tag allowed Shiekhattar to isolate BARD1 and any protein found with it. When they found the tag attached to a large complex of proteins, mass spectrometric sequencing allowed them to determine and isolate the individual parts of the complex.

"We showed that cells without functioning BRCC exhibit a tendency to become cancerous," says Shiekhattar. "So what we have here is a case of guilt by association, as the proteins essential for BRCC function are all likely suspects for cancer susceptibility,"

Among the proteins caught in this molecular dragnet, were BRCA2 – indicating that BRCA2 worked directly with BRCA1 in cells – and two new BRCC subunits. Shiekhattar and his colleagues learned that disrupting the function of the new subunits, named RCC36 and BRCC45, made cells mores susceptible to DNA damage from ionizing radiation and interfered with the ability of BRCC to halt the cell cycle at the checkpoint before cell division.

Shiekhattar and his colleagues found that certain sporadic breast tumors featured a profound increase in the amounts of BRCC36 protein. "While the mechanism isn’t quite clear, it might mean that too much BRCC36 somehow disrupts the function of BRCC," says Shiekhattar.

Many women with family histories of breast cancer already benefit from genetic testing. With more information on the causes of both hereditary and sporadic breast cancer, researchers hope to create better testing techniques and define possible targets for therapeutics.

The lead author on the Molecular Cell study is Yuanshu Dong, Ph.D., at The Wistar Institute. Wistar researchers Mohamed-Ali Hakimi, Ph.D., Easwari Kumaraswamy, Ph.D., and Neil S. Cooch, Ph.D., also contributed to the study. Co-authors Andrew K. Goodwin, Ph.D. and Xiaowei Chen, Ph.D. are from The Fox Chase Cancer Center.


This research was supported in part by grants from the Breast Cancer Research Foundation, the National Institutes of Health, the American Cancer Society, and the U.S. Army Medical Research and Materiel Command.

The Wistar Institute is an independent nonprofit biomedical research institution dedicated to discovering the causes and cures for major diseases, including cancer, cardiovascular disease, autoimmune disorders, and infectious diseases. Founded in 1892 as the first institution of its kind in the nation, The Wistar Institute today is a National Cancer Institute-designated Cancer Center – one of only eight focused on basic research. Discoveries at Wistar have led to the development of vaccines for such diseases as rabies and rubella, the identification of genes associated with breast, lung, and prostate cancer, and the development of monoclonal antibodies and other significant research technologies and tools.

Franklin Hoke | EurekAlert!
Further information:
http://www.wistar.upenn.edu

More articles from Health and Medicine:

nachricht Nanoparticles as a Solution against Antibiotic Resistance?
15.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>