Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breast cancer amongst young women

14.11.2003


Breast cancer is the most common and the second-most fatal malignant tumour amongst women who live in industrialised countries. Moreover, when present in young women, it would appear that a genetic predisposition is involved. This predisposition can be due to a number of causes and, amongst the most common, lie the alterations in the gene suppressors of the tumours. The lack of efficiency in these genes may be due to the fact that they are altered (mutated), they are not expressed, or they do not function because their start-up system (methylation) is altered, or a fragment is missing (deletion).



Mutations of specific gene suppressors (Brca1, Bcra2, ATM; Che2...), which in principle might be thought to be of great use in the clinic, are much more frequent than previously thought and, moreover, difficult to detect in many occasions. This is why, in clinical applications, more general markers to help in the prognosis of early breast cancer development are sought. These markers would indicate, for example, which patients need chemotherapy and which do not.

Double cause


Every woman has two copies of each cancer suppressor gene, one in each chromosome. Only when both copies suffer alteration do the gene suppressors cease to function and cancer is induced. In breast cancer amongst young women, one of the copies is usually damaged from birth and a second error occurs in the breast cells at an adult age. It has been postulated that when both errors occur together, it is probable that one of them is fragment loss.

Taking into account this hypothesis, a number of Hospital and University research groups from the Basque Country are trying to determine if the detection of loss of DNA fragments at specific locations on the genoma might have prognostic value.

Indicative deletions

In order to analyse the importance of this loss, normal, peritumorous and tumorous cells are extracted by micro-dissection and looked at to see if any deletion has taken place, comparing the tumorous DNA with the DNA of the normal cells. In this way, it is wished to analyse the importance that this deletion has in the development of the cancer, i.e. if it is going to be more aggressive or less so. To date, moreover, deletion in those zones where breast cancer suppressor genes had already been found has been studied. Now, on the other hand, other regions are analysed as the location of regions where deletions or DNA fragment loss appear would indicate that, given that a cancer has developed, an undiscovered gene suppressor may be found in this piece.

This study is, moreover, part of a wider project on breast cancer which also includes Basurto Hospital’s research into breast cancer suppressor gene mutations and that of the Dept. of Cellular Dynamics and Zoology at the Pharmacy Faculty in Gasteiz on the methylation of these genes. The aim of this work is to examine all possible causes of breast cancer amongst young women and, thus, help to map a more detailed prognosis of the illness in its development stages in order to be able to apply the most suitable treatment in each case.

For more information please contact:

Garazi Andonegi
Elhuyar Fundazioa
garazi@elhuyar.com
+34 943 363040

Garazi Andonegi | Basque research
Further information:
http://www.basqueresearch.com

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>