Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tissue-engineered valves give diseased hearts new life

12.11.2003


American Heart Association meeting report



Heart valves engineered from patients’ own tissue may offer a new treatment for valvular heart disease, researchers reported today at the American Heart Association’s Scientific Sessions 2003.

"Using this tissue-engineered valve overcomes many of the problems with mechanical or donor valves because it is a living structure from the patient’s own tissue, and so it does not cause an immunological reaction," said Pascal M. Dohmen, M.D., head of tissue engineering research and staff surgeon of the department of cardiovascular surgery at Charité Hospital in Berlin, Germany.


Dohmen and colleagues presented data on the first 23 patients to receive tissue-engineered pulmonary valves in the heart.

The patients, whose average age was 44, had aortic valve disease. The aortic valve connects the heart’s left ventricle with the aorta, the main artery that distributes blood throughout the body. A diseased valve may either open or close improperly, and pressure can build in the ventricle, injuring the heart.

Doctors can treat the condition with drugs or by surgically replacing the patient’s aortic valve with a donor valve, a mechanical valve or the patient’s pulmonary valve. The pulmonary valve is between the right ventricle and the pulmonary artery. In a surgical "swap" called the Ross procedure, the abnormal aortic valve is replaced with the pulmonary valve, and the pulmonary valve is replaced with a donor valve.

Dohmen and colleagues engineered a new pulmonary valve from the patients’ own cells. They implanted the patients’ healthy pulmonary valve into the aortic position. Then they implanted the tissue-engineered valve in the right ventricular outflow tract, where the pulmonary valve originally was.

With up to three years of follow-up, the engineered valve’s performance was "excellent," Dohmen reported. Echocardiography showed that the valves were functioning normally; the valve leaflets or flaps appeared smooth and pliable and showed no signs of calcification.

The patients were discharged from the hospital earlier, and were in better condition than other patients. They had no post-operative fever, which is often found in patients receiving donor heart valves, Dohmen said. Furthermore, the recovery time was shorter.

To engineer the new valve leaflets, the investigators extracted a small portion of vein from the patients’ leg or arm. Then they grew endothelial cells from the vein on a donor valve scaffold in the laboratory. The scaffold had been stripped of cells, leaving only an elastin and collagen matrix for binding the patients’ cells.

"In animal studies, we have seen that this matrix or scaffold will be absorbed by the body," Dohmen said. "In the mean time, the patient’s cells will form a new scaffold. After about a year, the matrix is of the patients’ own material.

"The problem until now was to reconstruct the right ventricular outflow tract," he said. "You cannot do this with regular animal (pig) or human donor valves because they will calcify early or degenerate soon after implantation, especially in patients under the age of 60."

Dohmen limits the use of the tissue-engineered valves to adults up to 60 years of age, but plans to explore the growth potential of the valves, with the hope of using them in children with congenital heart disease.

The heart valve scaffold technique is still considered experimental, he said.


Co-authors are Simon Dushe, Alexander Lembcke, Dietmar Kivelitz, Holger Hotz and Wolfgang F. Konertz.

Carole Bullock | EurekAlert!
Further information:
http://www.americanheart.org/

More articles from Health and Medicine:

nachricht Cystic fibrosis alters the structure of mucus in airways
28.06.2017 | University of Iowa Health Care

nachricht Mice provide insight into genetics of autism spectrum disorders
28.06.2017 | University of California - Davis

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

High conductive foils enabling large area lighting

29.06.2017 | Power and Electrical Engineering

Designed proteins to treat muscular dystrophy

29.06.2017 | Life Sciences

Climate Fluctuations & Non-equilibrium Statistical Mechanics: An Interdisciplinary Dialog

29.06.2017 | Seminars Workshops

VideoLinks
B2B-VideoLinks
More VideoLinks >>>