Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tissue-engineered valves give diseased hearts new life

12.11.2003


American Heart Association meeting report



Heart valves engineered from patients’ own tissue may offer a new treatment for valvular heart disease, researchers reported today at the American Heart Association’s Scientific Sessions 2003.

"Using this tissue-engineered valve overcomes many of the problems with mechanical or donor valves because it is a living structure from the patient’s own tissue, and so it does not cause an immunological reaction," said Pascal M. Dohmen, M.D., head of tissue engineering research and staff surgeon of the department of cardiovascular surgery at Charité Hospital in Berlin, Germany.


Dohmen and colleagues presented data on the first 23 patients to receive tissue-engineered pulmonary valves in the heart.

The patients, whose average age was 44, had aortic valve disease. The aortic valve connects the heart’s left ventricle with the aorta, the main artery that distributes blood throughout the body. A diseased valve may either open or close improperly, and pressure can build in the ventricle, injuring the heart.

Doctors can treat the condition with drugs or by surgically replacing the patient’s aortic valve with a donor valve, a mechanical valve or the patient’s pulmonary valve. The pulmonary valve is between the right ventricle and the pulmonary artery. In a surgical "swap" called the Ross procedure, the abnormal aortic valve is replaced with the pulmonary valve, and the pulmonary valve is replaced with a donor valve.

Dohmen and colleagues engineered a new pulmonary valve from the patients’ own cells. They implanted the patients’ healthy pulmonary valve into the aortic position. Then they implanted the tissue-engineered valve in the right ventricular outflow tract, where the pulmonary valve originally was.

With up to three years of follow-up, the engineered valve’s performance was "excellent," Dohmen reported. Echocardiography showed that the valves were functioning normally; the valve leaflets or flaps appeared smooth and pliable and showed no signs of calcification.

The patients were discharged from the hospital earlier, and were in better condition than other patients. They had no post-operative fever, which is often found in patients receiving donor heart valves, Dohmen said. Furthermore, the recovery time was shorter.

To engineer the new valve leaflets, the investigators extracted a small portion of vein from the patients’ leg or arm. Then they grew endothelial cells from the vein on a donor valve scaffold in the laboratory. The scaffold had been stripped of cells, leaving only an elastin and collagen matrix for binding the patients’ cells.

"In animal studies, we have seen that this matrix or scaffold will be absorbed by the body," Dohmen said. "In the mean time, the patient’s cells will form a new scaffold. After about a year, the matrix is of the patients’ own material.

"The problem until now was to reconstruct the right ventricular outflow tract," he said. "You cannot do this with regular animal (pig) or human donor valves because they will calcify early or degenerate soon after implantation, especially in patients under the age of 60."

Dohmen limits the use of the tissue-engineered valves to adults up to 60 years of age, but plans to explore the growth potential of the valves, with the hope of using them in children with congenital heart disease.

The heart valve scaffold technique is still considered experimental, he said.


Co-authors are Simon Dushe, Alexander Lembcke, Dietmar Kivelitz, Holger Hotz and Wolfgang F. Konertz.

Carole Bullock | EurekAlert!
Further information:
http://www.americanheart.org/

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>