Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tissue-engineered valves give diseased hearts new life

12.11.2003


American Heart Association meeting report



Heart valves engineered from patients’ own tissue may offer a new treatment for valvular heart disease, researchers reported today at the American Heart Association’s Scientific Sessions 2003.

"Using this tissue-engineered valve overcomes many of the problems with mechanical or donor valves because it is a living structure from the patient’s own tissue, and so it does not cause an immunological reaction," said Pascal M. Dohmen, M.D., head of tissue engineering research and staff surgeon of the department of cardiovascular surgery at Charité Hospital in Berlin, Germany.


Dohmen and colleagues presented data on the first 23 patients to receive tissue-engineered pulmonary valves in the heart.

The patients, whose average age was 44, had aortic valve disease. The aortic valve connects the heart’s left ventricle with the aorta, the main artery that distributes blood throughout the body. A diseased valve may either open or close improperly, and pressure can build in the ventricle, injuring the heart.

Doctors can treat the condition with drugs or by surgically replacing the patient’s aortic valve with a donor valve, a mechanical valve or the patient’s pulmonary valve. The pulmonary valve is between the right ventricle and the pulmonary artery. In a surgical "swap" called the Ross procedure, the abnormal aortic valve is replaced with the pulmonary valve, and the pulmonary valve is replaced with a donor valve.

Dohmen and colleagues engineered a new pulmonary valve from the patients’ own cells. They implanted the patients’ healthy pulmonary valve into the aortic position. Then they implanted the tissue-engineered valve in the right ventricular outflow tract, where the pulmonary valve originally was.

With up to three years of follow-up, the engineered valve’s performance was "excellent," Dohmen reported. Echocardiography showed that the valves were functioning normally; the valve leaflets or flaps appeared smooth and pliable and showed no signs of calcification.

The patients were discharged from the hospital earlier, and were in better condition than other patients. They had no post-operative fever, which is often found in patients receiving donor heart valves, Dohmen said. Furthermore, the recovery time was shorter.

To engineer the new valve leaflets, the investigators extracted a small portion of vein from the patients’ leg or arm. Then they grew endothelial cells from the vein on a donor valve scaffold in the laboratory. The scaffold had been stripped of cells, leaving only an elastin and collagen matrix for binding the patients’ cells.

"In animal studies, we have seen that this matrix or scaffold will be absorbed by the body," Dohmen said. "In the mean time, the patient’s cells will form a new scaffold. After about a year, the matrix is of the patients’ own material.

"The problem until now was to reconstruct the right ventricular outflow tract," he said. "You cannot do this with regular animal (pig) or human donor valves because they will calcify early or degenerate soon after implantation, especially in patients under the age of 60."

Dohmen limits the use of the tissue-engineered valves to adults up to 60 years of age, but plans to explore the growth potential of the valves, with the hope of using them in children with congenital heart disease.

The heart valve scaffold technique is still considered experimental, he said.


Co-authors are Simon Dushe, Alexander Lembcke, Dietmar Kivelitz, Holger Hotz and Wolfgang F. Konertz.

Carole Bullock | EurekAlert!
Further information:
http://www.americanheart.org/

More articles from Health and Medicine:

nachricht 'Icebreaker' protein opens genome for t cell development, Penn researchers find
21.02.2018 | University of Pennsylvania School of Medicine

nachricht Similarities found in cancer initiation in kidney, liver, stomach, pancreas
21.02.2018 | Washington University School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>