Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Purdue engineers: Metal nano-bumps could improve artificial body parts

04.11.2003


Biomedical engineers at Purdue University have proven that bone cells attach better to metals with nanometer-scale surface features, offering hope for improved prosthetic hips, knees and other implants.



Conventional titanium alloys used in hip and knee replacements are relatively smooth – their surfaces possess bumps measured in microns – or millionths of a meter. Natural bone and other tissues, however, have rougher surfaces with bumps about 100 nanometers – or billionths of a meter – wide.

The body often reacts to the smooth artificial parts as it would to any foreign invader: It covers the parts with a fibrous tissue intended to remove the unwanted material. This fibrous tissue gets between prosthetic devices and damaged body parts, preventing prostheses from making good contact with the body parts in which they are implanted and interfering with their proper functioning.


Thomas Webster, an assistant professor of biomedical engineering, and postdoctoral researcher Jeremiah Ejiofor, have shown that materials containing the nanometer-scale bumps could be critical to keeping the body from rejecting artificial parts. The work also shows that materials containing the tiny bumps stimulate the body to regrow bone and other types of tissue.

Webster has demonstrated that human bone cells called osteoblasts generate about 60 percent more new cells when they are exposed to a titanium alloy that contains nanometer-scale features, compared to the same alloy containing micron-size surface bumps. Because bone and other tissues adhere to artificial body parts by growing new cells that attach to the implants, the experiments offer hope in developing longer lasting and more natural implants, he said.

The peer-reviewed findings were presented on Oct. 28 during the sixth annual Nanoparticles 2003 Conference in Boston.

"We believe the bone cells are basically recognizing the rougher nanometer surface and saying, ’Gee, this is a lot like what I’m used to adhering to in the body, so I am going to adhere to it and make bone,’" Webster said.

The experiments – in a field of research known as tissue engineering – were done in petri dishes, not with animals or people. Webster had demonstrated similar increases in cell growth using ceramics and various polymers, or plastics, and composites made of both ceramics and polymers, which are used in artificial body parts. He and co-workers at Purdue, including Karen Haberstroh and Riyi Shi, both assistant professors of biomedical engineering, have seen increased cell growth in cartilage and tissues from the bladder, arteries and brain when exposed to ceramics and polymers with nanometer-scale surface features.

Demonstrating the same results with metals, however, is especially important, Webster said.

"The reason we are excited about these findings is that metals are used much more than ceramics and polymers in artificial parts that are attached to bone," he said.

Webster and Ejiofor combined nanometer particles of a titanium alloy with a liquid suspension of human bone cells in petri plates. After three hours, they washed the alloys and used a microscope to count how many of the dyed cells adhered, which enabled the researchers to calculate how many cells stuck to the metal. Out of 2,500 bone cells in the suspension, about 2,300 – or more than 90 percent – were found to adhere to the metal. That compares with about 1,300 cells – or about 50 percent – adhering to metal with conventional, smoother surfaces.

"Almost all of the cells are attaching, which is pretty unheard of," Webster said. "With the conventional material you normally get about half of the cells attaching. We can do a lot better than that."

The need for better technology is growing as more artificial body parts are used, Webster said.

For example, about 152,000 hip replacement surgeries were performed in the United States in 2000, representing a 33 percent increase from 1990. The number of hip replacements by 2030 is expected to grow to 272,000 in this country alone because of elderly baby boomers.

The researchers used an alloy of titanium, aluminum and vanadium, which is commonly used in artificial joints and hip and knee replacements. They also are seeing similar increases in cell growth for commercially pure titanium and for an alloy of cobalt, chromium and molybdenum, both of which are currently used as orthopedic implants.

"The average lifetime of an implant is about 15 years, unfortunately," Webster said. "By the end of that 15 years, on average, the implant fails as bonding between the bone and the implant separates. It’s not bound to anything anymore, so it becomes loose and it is very painful."

The work may help researchers use nanotechnology to design implants that last longer and work better.

"Due to these promising experiments with petri dishes, we are currently conducting more experiments and are working closely with area companies to commercialize these metals," Webster said.

The research has been funded by the National Science Foundation.

Writer: Emil Venere, (765) 494-4709, venere@purdue.edu

Source: Thomas Webster, (765) 496-7516, twebster@purdue.edu

Purdue News Service: (765) 494-2096; purduenews@purdue.edu

Emil Venere | Purdue University
Further information:
http://news.uns.purdue.edu/html4ever/031103.Webster.nanobumps.html

More articles from Health and Medicine:

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>