Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Purdue engineers: Metal nano-bumps could improve artificial body parts

04.11.2003


Biomedical engineers at Purdue University have proven that bone cells attach better to metals with nanometer-scale surface features, offering hope for improved prosthetic hips, knees and other implants.



Conventional titanium alloys used in hip and knee replacements are relatively smooth – their surfaces possess bumps measured in microns – or millionths of a meter. Natural bone and other tissues, however, have rougher surfaces with bumps about 100 nanometers – or billionths of a meter – wide.

The body often reacts to the smooth artificial parts as it would to any foreign invader: It covers the parts with a fibrous tissue intended to remove the unwanted material. This fibrous tissue gets between prosthetic devices and damaged body parts, preventing prostheses from making good contact with the body parts in which they are implanted and interfering with their proper functioning.


Thomas Webster, an assistant professor of biomedical engineering, and postdoctoral researcher Jeremiah Ejiofor, have shown that materials containing the nanometer-scale bumps could be critical to keeping the body from rejecting artificial parts. The work also shows that materials containing the tiny bumps stimulate the body to regrow bone and other types of tissue.

Webster has demonstrated that human bone cells called osteoblasts generate about 60 percent more new cells when they are exposed to a titanium alloy that contains nanometer-scale features, compared to the same alloy containing micron-size surface bumps. Because bone and other tissues adhere to artificial body parts by growing new cells that attach to the implants, the experiments offer hope in developing longer lasting and more natural implants, he said.

The peer-reviewed findings were presented on Oct. 28 during the sixth annual Nanoparticles 2003 Conference in Boston.

"We believe the bone cells are basically recognizing the rougher nanometer surface and saying, ’Gee, this is a lot like what I’m used to adhering to in the body, so I am going to adhere to it and make bone,’" Webster said.

The experiments – in a field of research known as tissue engineering – were done in petri dishes, not with animals or people. Webster had demonstrated similar increases in cell growth using ceramics and various polymers, or plastics, and composites made of both ceramics and polymers, which are used in artificial body parts. He and co-workers at Purdue, including Karen Haberstroh and Riyi Shi, both assistant professors of biomedical engineering, have seen increased cell growth in cartilage and tissues from the bladder, arteries and brain when exposed to ceramics and polymers with nanometer-scale surface features.

Demonstrating the same results with metals, however, is especially important, Webster said.

"The reason we are excited about these findings is that metals are used much more than ceramics and polymers in artificial parts that are attached to bone," he said.

Webster and Ejiofor combined nanometer particles of a titanium alloy with a liquid suspension of human bone cells in petri plates. After three hours, they washed the alloys and used a microscope to count how many of the dyed cells adhered, which enabled the researchers to calculate how many cells stuck to the metal. Out of 2,500 bone cells in the suspension, about 2,300 – or more than 90 percent – were found to adhere to the metal. That compares with about 1,300 cells – or about 50 percent – adhering to metal with conventional, smoother surfaces.

"Almost all of the cells are attaching, which is pretty unheard of," Webster said. "With the conventional material you normally get about half of the cells attaching. We can do a lot better than that."

The need for better technology is growing as more artificial body parts are used, Webster said.

For example, about 152,000 hip replacement surgeries were performed in the United States in 2000, representing a 33 percent increase from 1990. The number of hip replacements by 2030 is expected to grow to 272,000 in this country alone because of elderly baby boomers.

The researchers used an alloy of titanium, aluminum and vanadium, which is commonly used in artificial joints and hip and knee replacements. They also are seeing similar increases in cell growth for commercially pure titanium and for an alloy of cobalt, chromium and molybdenum, both of which are currently used as orthopedic implants.

"The average lifetime of an implant is about 15 years, unfortunately," Webster said. "By the end of that 15 years, on average, the implant fails as bonding between the bone and the implant separates. It’s not bound to anything anymore, so it becomes loose and it is very painful."

The work may help researchers use nanotechnology to design implants that last longer and work better.

"Due to these promising experiments with petri dishes, we are currently conducting more experiments and are working closely with area companies to commercialize these metals," Webster said.

The research has been funded by the National Science Foundation.

Writer: Emil Venere, (765) 494-4709, venere@purdue.edu

Source: Thomas Webster, (765) 496-7516, twebster@purdue.edu

Purdue News Service: (765) 494-2096; purduenews@purdue.edu

Emil Venere | Purdue University
Further information:
http://news.uns.purdue.edu/html4ever/031103.Webster.nanobumps.html

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>