Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


McMaster researchers pave the way to new drugs for bone diseases


Osteocalcin, a small bone-specific protein that influences bone formation, may facilitate the development of drugs to combat bone-related diseases, such as osteoporosis and bone metastases of cancer, say McMaster University researchers. Their study is to be published in the October 30 issue of Nature, a high-impact scientific journal.

Although it’s generally accepted that osteocalcin, discovered in 1976, binds to the mineral component of bone, called hydroxyapatite, the biological function and the 3-D structure of the protein have never been known. Now McMaster researchers have unlocked the mystery.

Osteocalcin is used as a biological marker for assessing bone disease and is closely linked to bone turnover, a fine balance between bone resorption and formation which goes on constantly during life.

“The 3-D structure of osteocalcin leads one to believe that the protein is the molecular marker or address of bone,” said biochemistry professor Daniel Yang.

It’s important to know the structure of the proteins because, if cells involved in bone metastasis and other bone diseases use the osteocalcin protein to identify where the bone is and where to attack, it may be possible to modify the structure through new drug therapies so that bone disease or metastasis does not set in.

“This is the result of seven years of hard work,” said Yang. “The crystal structure of osteocalcin provides, for the first time, an atomic model for the bone recognition mechanism of osteocalcin. It also allows us to speculate on the function of osteocalcin.”

Quyen Hoang, who worked on the research as a McMaster PhD student, said the study’s results provide essential tools to rationally design drugs that modulate the activity of osteocalcin and bone turnover.

Additionally, when bound to bone, part of osteocalcin is exposed to act as a magnet to recruit bone-processing cells to the bone surface to carry out bone resorption and formation.

“Based on the results of our study, we have designed some potential bone drugs and we are developing a method to screen for more,” said Hoang.

For more information contact:

Veronica McGuire
Media Relations
McMaster University
Faculty of Health Sciences
(905) 525-9140, ext. 22169

Daniel Yang
Professor, Biochemistry
McMaster University
Faculty of Health Sciences
(905) 525-9140, ext. 22455

Veronica McGuire | McMaster University
Further information:

More articles from Health and Medicine:

nachricht NIH scientists describe potential antibody treatment for multidrug-resistant K. pneumoniae
14.03.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht Researchers identify key step in viral replication
13.03.2018 | University of Pittsburgh Schools of the Health Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Physicists made crystal lattice from polaritons

20.03.2018 | Physics and Astronomy

Mars' oceans formed early, possibly aided by massive volcanic eruptions

20.03.2018 | Physics and Astronomy

Thawing permafrost produces more methane than expected

20.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>