Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Simpler, cheaper way to make and fit prosthetics developed

27.10.2003


Researchers at Washington University School of Medicine in St. Louis have developed an easier and less expensive way to make sockets for prosthetic limbs.



The study’s principal investigator, Jack R. Engsberg, Ph.D., will receive the Howard R. Thranhardt Lecture Honorarium for this work and present preliminary findings at the National Assembly of the American Orthotic and Prosthetic Association at 11 a.m. on Saturday, Oct. 25, in Reno, Nev.

"What we’re doing is an entirely different process from the traditional way of making prosthetic sockets," says Engsberg, who is a research associate professor of neurological surgery.


The new process may expedite and simplify the procedure for the estimated 400,000 Americans with an amputated limb. According to Engsberg, it also could be particularly useful in other countries, where landmines are responsible for millions of amputations, most of which occur in areas that do not have the financial or medical resources to fit prosthetics.

"We think that eventually our new technique could be taught throughout the world and would be cheaper and easier to implement," he says.

The most important and difficult part of making a prosthetic limb is the socket, the part of the prosthetic that fits against the stump of the remaining part of the limb. Traditionally, this requires the expertise of a specially trained prosthetist. A plaster cast of the stump is made and then filled with plaster to create a model. The model is then used to make a socket, which is adjusted to optimize its ability to contour to the individual’s stump and to comfortably bear the weight of that individual. Sockets typically require several fittings and adjustments, including production of several test sockets before a final product is achieved.

Several approaches to improving this procedure are under investigation, but most are more complicated and expensive than the traditional approach. Engsberg and his team developed a simpler, less expensive alternative using a gel instead of plaster to make the stump mold. In this process, the stump is placed in a pail with water and alginate powder, and the powder turns into a jello-like substance in about five minutes. The gel contours to the shape of the stump and produces an exact mold. Plaster is still used to fill the mold and create a model of the stump.

To test this alternative, the team made two sockets for each of the 10 leg amputees. One socket was made with the traditional plaster mold method; the other was made with the alginate gel. The two processes also differed in a second important way: The traditional method required production of up to three test sockets, whereas the gel sockets did not undergo any adjustments or additional fittings.

Using several measurements of walking performance and quality of life, the team found no differences in the success of the two types of sockets. And, when asked to choose which socket they wanted to keep, five chose the one made with the gel process, four chose the traditional socket and one person chose to keep both.

"Our data suggest that the gel process produces sockets that fit at least as well as those made in the traditional way," Engsberg says. "In this preliminary study, we’ve shown that it’s possible to make a socket without any modifications, using a process that’s easy enough to be performed by a technician instead of a specialized prosthetist."


Engsberg JR, Sprouse SW, Uhrich ML, Ziegler BR, Luitjohan FD. Preliminary investigation comparing rectified and unrectified sockets for transtibial amputees. American Orthotic and Prosthetic Association National Assembly, Oct. 25, 2003.

Funding from the National Institute of Child Health and Human Development and the National Institutes of Health supported this research.

The full-time and volunteer faculty of Washington University School of Medicine are the physicians and surgeons of Barnes-Jewish and St. Louis Children’s hospitals. The School of Medicine is one of the leading medical research, teaching and patient-care institutions in the nation. Through its affiliations with Barnes-Jewish and St. Louis Children’s hospitals, the School of Medicine is linked to BJC HealthCare.

Gila Z. Reckess | EurekAlert!
Further information:
http://medinfo.wustl.edu/

More articles from Health and Medicine:

nachricht Nanoparticles as a Solution against Antibiotic Resistance?
15.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>