Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bone cells help call the shots for the blood’s stem cells within

23.10.2003


Molecular partners jagged and notch are key; a new role for the osteoblast



Just as oak barrels don’t simply hold fine wine but also play a vital role in its aging and development, scientists have discovered that bones nurture and control blood development in the bone marrow within to a profound extent.

In some sense the finding by scientists at the University of Rochester Medical Center, Harvard Medical School and Massachusetts General Hospital may not seem startling – after all, it’s long been known that the bone marrow that is the source of all our blood cells is in the center of our longest bones. But the team’s paper in the Oct. 23 issue of the journal Nature is the first to pinpoint the role of bone forming cells in controlling the expansion of blood-forming stem cells, and to identify a way to multiply such cells without pushing them along toward their ultimate cell fate.


The finding could be important for bone-marrow-transplant patients, for whom a limit in stem cells often makes the procedure more dangerous if not impossible. By exploiting their knowledge of the bone’s role in the creation of blood cells, the team was able to create mice that were nearly four times as likely to survive a difficult transplant as other mice. The bone marrows of the treated mice looked much healthier and were more densely packed with blood cells.

"This started as a rather improbable project, a side project that became more and more interesting as we made our findings," says Laura Calvi, M.D., of the University of Rochester Medical Center, who is the first author and an endocrinologist in the Department of Medicine. "It’s especially exciting because the compound we used is already known to work safely in people, so we can start looking quickly to see whether this strategy will work in people too."

Calvi began the work when she was a physician at Massachusetts General Hospital. A physician who specializes in treating patients with osteoporosis, she was curious about the workings of parathyroid hormone, a molecule long known as an important regulator of bone metabolism. A modified form of the compound was approved last year as the medication Forteo for the treatment of osteoporosis.

Calvi had been studying in the laboratory a genetically altered strain of mice whose bodies behaved as if there were a steady stream of the hormone – in other words, the hormone’s receptor was always activated in these mice, but only in bone-building cells known as osteoblasts, nowhere else. To understand whether modifying the bone forming cells affected the neighboring hematopoietic cells, she began collaborating with David Scadden, M.D., a hematologist at Massachusetts General with a specific interest in hematopoietic stem cell regulation.

The team found the hormone doubles the bone marrow’s output of blood-forming stem cells known as hematopoietic stem cells, from which all our blood cells originate.

The scientists also discovered that bone-building osteoblasts are key to the process, not just giving structure to bone but also affecting the formation of blood cells within. While it was known that parathyroid hormone boosts the numbers of osteoblasts, the scientists pinpointed a molecular signaling system between osteoblasts and stem cells that governs the formation of the stem cells.

"Currently there are medications to expand stem cells, but they cause the cells to differentiate also," says Calvi. "There’s not really much you can do to expand the hematopoietic stem cell population. It turns out that it’s the osteoblast, right in the bone, that is able to do that."

The ability to expand stem cells would be especially welcome for transplant patients, says Jane Liesveld, M.D., clinical director of the Leukemia, Blood and Marrow Transplant Program at the James P. Wilmot Cancer Center. Sometimes patients or their transplant donors can’t produce enough stem cells, making them ineligible for the procedure, which is sometimes a patient’s best chance for survival.

Calvi and Scadden’s team pinpointed molecular signals known as "Jagged-1" and "Notch" as the key players that bring osteoblasts and stem cells together. The team found that parathyroid hormone not only boosts the number of osteoblasts but also the amount of Jagged-1 on those cells, making them more likely to interact with the Notch molecule on stem cells and spur their expansion.

Notch is well known to stem cell researchers such as hematologist Laurie Milner, M.D., associate professor of Pediatrics and Medical Oncology in the university’s Aab Institute of Biomedical Sciences and an author of the Nature paper. She was one of the first people to discover the importance of Notch in stem cells, identifying the molecule as one that helps direct immature blood cells decide their fate. It’s Notch that allows a fixed number of stem cells to serve as the font of blood cells that will last a lifetime.

Milner says while there has been some evidence of the involvement of Jagged and Notch in the stem cell process, it wasn’t known which of the body’s cells besides the stem cells were involved.

"For the most part, hematopoietic stem cells researchers haven’t thought that much about osteoblasts, though they’re in the bone marrow right next to the blood cells that are developing," says Milner.

Calvi attributes her interest in looking beyond the traditional boundaries of bone researchers partly to her constant contact with a hematologist, her husband Jonathan Friedberg, M.D.

"I look at bone as a bone biologist would," says Calvi. "The osteoblasts provide support and maintain structure. He looks at bone as a source for bone marrow. We had a lot of interesting discussions. Why is it that blood cells are produced in the bone? Is it simply because the bone can provide the space, or is there more to it?"

While working on the project, Calvi moved to Rochester from Harvard in the summer of 2002; she credits a talk by a Rochester colleague, hematologist James Palis, on the origins of blood cells, with putting her on the trail of Notch and Jagged.

"Sometimes you just need to be exposed to something that is foreign, to open your eyes to understand what you’ve been looking at," Calvi says.

Calvi did the work with funding from the National Institute of Diabetes and Digestive and Kidney Diseases. The research was also funded by the American Society of Hematology, the Doris Duke Foundation, and the Burroughs Wellcome Fund.

In addition to Calvi and Milner, the Rochester authors include technician Jonathan Weber. Authors from Harvard Medical School include M.C. Knight, E. Schipani, P. Divieti, F.R. Bringhurst, H.M. Kronenberg; authors from Massachusetts General Hospital Cancer Center, besides Scadden, were G.B. Adams, K.W. Weibrecht, D.P. Olson, and R.P. Martin.


###

Tom Rickey | EurekAlert!
Further information:
http://www.urmc.rochester.edu/

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>