Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bone cells help call the shots for the blood’s stem cells within

23.10.2003


Molecular partners jagged and notch are key; a new role for the osteoblast



Just as oak barrels don’t simply hold fine wine but also play a vital role in its aging and development, scientists have discovered that bones nurture and control blood development in the bone marrow within to a profound extent.

In some sense the finding by scientists at the University of Rochester Medical Center, Harvard Medical School and Massachusetts General Hospital may not seem startling – after all, it’s long been known that the bone marrow that is the source of all our blood cells is in the center of our longest bones. But the team’s paper in the Oct. 23 issue of the journal Nature is the first to pinpoint the role of bone forming cells in controlling the expansion of blood-forming stem cells, and to identify a way to multiply such cells without pushing them along toward their ultimate cell fate.


The finding could be important for bone-marrow-transplant patients, for whom a limit in stem cells often makes the procedure more dangerous if not impossible. By exploiting their knowledge of the bone’s role in the creation of blood cells, the team was able to create mice that were nearly four times as likely to survive a difficult transplant as other mice. The bone marrows of the treated mice looked much healthier and were more densely packed with blood cells.

"This started as a rather improbable project, a side project that became more and more interesting as we made our findings," says Laura Calvi, M.D., of the University of Rochester Medical Center, who is the first author and an endocrinologist in the Department of Medicine. "It’s especially exciting because the compound we used is already known to work safely in people, so we can start looking quickly to see whether this strategy will work in people too."

Calvi began the work when she was a physician at Massachusetts General Hospital. A physician who specializes in treating patients with osteoporosis, she was curious about the workings of parathyroid hormone, a molecule long known as an important regulator of bone metabolism. A modified form of the compound was approved last year as the medication Forteo for the treatment of osteoporosis.

Calvi had been studying in the laboratory a genetically altered strain of mice whose bodies behaved as if there were a steady stream of the hormone – in other words, the hormone’s receptor was always activated in these mice, but only in bone-building cells known as osteoblasts, nowhere else. To understand whether modifying the bone forming cells affected the neighboring hematopoietic cells, she began collaborating with David Scadden, M.D., a hematologist at Massachusetts General with a specific interest in hematopoietic stem cell regulation.

The team found the hormone doubles the bone marrow’s output of blood-forming stem cells known as hematopoietic stem cells, from which all our blood cells originate.

The scientists also discovered that bone-building osteoblasts are key to the process, not just giving structure to bone but also affecting the formation of blood cells within. While it was known that parathyroid hormone boosts the numbers of osteoblasts, the scientists pinpointed a molecular signaling system between osteoblasts and stem cells that governs the formation of the stem cells.

"Currently there are medications to expand stem cells, but they cause the cells to differentiate also," says Calvi. "There’s not really much you can do to expand the hematopoietic stem cell population. It turns out that it’s the osteoblast, right in the bone, that is able to do that."

The ability to expand stem cells would be especially welcome for transplant patients, says Jane Liesveld, M.D., clinical director of the Leukemia, Blood and Marrow Transplant Program at the James P. Wilmot Cancer Center. Sometimes patients or their transplant donors can’t produce enough stem cells, making them ineligible for the procedure, which is sometimes a patient’s best chance for survival.

Calvi and Scadden’s team pinpointed molecular signals known as "Jagged-1" and "Notch" as the key players that bring osteoblasts and stem cells together. The team found that parathyroid hormone not only boosts the number of osteoblasts but also the amount of Jagged-1 on those cells, making them more likely to interact with the Notch molecule on stem cells and spur their expansion.

Notch is well known to stem cell researchers such as hematologist Laurie Milner, M.D., associate professor of Pediatrics and Medical Oncology in the university’s Aab Institute of Biomedical Sciences and an author of the Nature paper. She was one of the first people to discover the importance of Notch in stem cells, identifying the molecule as one that helps direct immature blood cells decide their fate. It’s Notch that allows a fixed number of stem cells to serve as the font of blood cells that will last a lifetime.

Milner says while there has been some evidence of the involvement of Jagged and Notch in the stem cell process, it wasn’t known which of the body’s cells besides the stem cells were involved.

"For the most part, hematopoietic stem cells researchers haven’t thought that much about osteoblasts, though they’re in the bone marrow right next to the blood cells that are developing," says Milner.

Calvi attributes her interest in looking beyond the traditional boundaries of bone researchers partly to her constant contact with a hematologist, her husband Jonathan Friedberg, M.D.

"I look at bone as a bone biologist would," says Calvi. "The osteoblasts provide support and maintain structure. He looks at bone as a source for bone marrow. We had a lot of interesting discussions. Why is it that blood cells are produced in the bone? Is it simply because the bone can provide the space, or is there more to it?"

While working on the project, Calvi moved to Rochester from Harvard in the summer of 2002; she credits a talk by a Rochester colleague, hematologist James Palis, on the origins of blood cells, with putting her on the trail of Notch and Jagged.

"Sometimes you just need to be exposed to something that is foreign, to open your eyes to understand what you’ve been looking at," Calvi says.

Calvi did the work with funding from the National Institute of Diabetes and Digestive and Kidney Diseases. The research was also funded by the American Society of Hematology, the Doris Duke Foundation, and the Burroughs Wellcome Fund.

In addition to Calvi and Milner, the Rochester authors include technician Jonathan Weber. Authors from Harvard Medical School include M.C. Knight, E. Schipani, P. Divieti, F.R. Bringhurst, H.M. Kronenberg; authors from Massachusetts General Hospital Cancer Center, besides Scadden, were G.B. Adams, K.W. Weibrecht, D.P. Olson, and R.P. Martin.


###

Tom Rickey | EurekAlert!
Further information:
http://www.urmc.rochester.edu/

More articles from Health and Medicine:

nachricht Hot cars can hit deadly temperatures in as little as one hour
24.05.2018 | Arizona State University

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>