Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The genetics of blindness

09.10.2003


Treatment for the most common inherited cause of blindness, retinitis pigmentosa, is one step closer, according to investigators at the Research Institute of the McGill University Health Centre (MUHC). They are the first to link two new gene mutations in two French-Canadian families to loss of vision in humans. Their findings are published in this month’s issue of the American Journal of Ophthalmology. This project was funded by the Canadian Institutes of Health Research (CIHR), le Fonds de la recherche en santé du Québec (FRSQ) and the Foundation Fighting Blindness - Canada.

Approximately 1.5 million people worldwide are affected by retinitis pigmentosa, which at the moment has no cure. This disease causes vision loss by progressive degeneration and death of the cells that make up the retina, the portion of the eye that responds to light.

"Retinitis pigmentosa is a devastating and complex disease," says principal investigator, Dr. Robert Koenekoop, director of pediatric ophthalmology at the Montreal Children’s Hospital of the MUHC. “Many genes, gene mutations and symptoms are involved. The first steps to developing a treatment are the characterization of all these factors. Important progress has been made by identifying two important gene mutations present in the French-Canadian population.”



Koenekoop in collaboration with MUHC geneticist, Dr. Guy Rouleau, examined two very large French-Canadian families afflicted with retinitis pigmentosa for four generations. Ophthalmic evaluations and genetic analysis were used to characterize the gene mutations and the resulting phenotype. They demonstrated that these mutations resulted in variable, severe forms of the disease and in some cases other neurological disorders, such as hearing loss.

"Our findings show that different gene mutations result in different symptoms of the disease," says Rouleau. "Our study will provide hope to those families who have suffered from this disease for generations and will lead to new screening and diagnostic tests."

"We were fortunate to have the facilities and expertise to make this discovery," concludes Koenekoop. "This project was an excellent example of genetic and ophthalmic cross-disciplinary research."

About the Research Institute of the McGill University Health Centre

The Research Institute of the McGill University Health Centre (MUHC), located in Montreal, Quebec, is Canada’s largest concentration of biomedical and health-care researchers. The institute has over 500 researchers, nearly 650 graduate and post-doctoral students and 306 laboratories devoted to research. The mission of the institute is to facilitate investigator-initiated and discovery-driven research that creates new knowledge. This research is inextricably linked to clinical programs, which provide a bench-to-bedside-to-community continuum. The MUHC research institute is renowned as a world-class research institution that operates at the forefront of new knowledge, innovation, trends, and technologies.

About the Canadian Institutes of Health Research

CIHR is Canada’s premier agency for health research. Its objective is to excel, according to internationally accepted standards of scientific excellence, in the creation of new knowledge and its translation into improved health for Canadians, more effective health services and products, and a strengthened health care system.

For more information, please contact:
Christine Zeindler, MSc
Communications Coordinator (Research)
McGill University Health Centre Communications Services
www.muhc.ca
(514) 934-1934 ext. 36419
pager: (514) 406-1577

Christine Zeindler | EurekAlert!
Further information:
http://www.mcgill.ca/
http://www.muhc.ca

More articles from Health and Medicine:

nachricht On track to heal leukaemia
18.01.2017 | Universitätsspital Bern

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>