Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The neighborhood matters: Packard Center scientists show cell environment is important in ALS

06.10.2003


In amyotrophic lateral sclerosis (ALS), neighborhood may be everything, if a new study in mouse models of the disease holds true for patients.



ALS, or Lou Gehrig’s disease, brings about a gradual death of the motor neurons that activate muscles. Paralysis follows. But according to work described today in the journal Science, the cells that are next to motor neurons -- but aren’t themselves nerve cells -- can play a major role in advancing or limiting the disease.

"What we’ve been given is a new principle for extending survival or, perhaps, overcoming ALS, based on how many healthy cells surround an ailing motor nerve cell," says Don Cleveland, Ph.D., a scientist with The Packard Center for ALS Research at Johns Hopkins and, with Larry Goldstein, Ph.D., co-leader of the research team. "All this has great implications for stem cell therapy," he adds. "We now believe delivery of normal, non-neuronal cells to spinal cords could be completely protective, even without replacement of a single motor neuron."


In a series of experiments, the team measured the effect of having different proportions of healthy cells to at-risk cells in mice, clocking their survival time. Normally, the scientists work with standard animal models of ALS. Those mice or rats carry a mutant human gene -- called SOD1 -- that triggers a rare, inherited form of the disease in people. In these models, every cell carries a mutant SOD1 gene. The animals typically slip into death by the time they’re six to eight months of age.

But in this study, the researchers used chimeric animals -- mice engineered to be a mix of normal cells, also called wild type, and cells containing the mutant SOD1 gene. They tagged the cells with molecular flags to make it clear which were which. The percent of wild-type cells in the animals’ spinal cords ranged from 5 to 90 percent.

Having wild type cells mixed in had the effect of extending mouse survival from one to eight months, depending on the number of cells and type of SOD1 mutation. In a second group of chimeric mice, brought about by a different technique and with a different type of tracer, the animals survived disease-free until sacrificed for study at an age at least twice the age at which typical SOD1 animal models die.

Even though further study showed that as high as three-fourths of the motor neurons in the animals’ spinal cords carried the mutant gene, all the motor neurons remained amazingly healthy, apparently from having healthy non-neuronal cells in the neighborhood. This was especially true of the second batch of mice, which had no microscopic evidence of disease.

"It’s really striking," says Cleveland, "to see what a small number of normal cells effectively eliminated damage to motor neurons from the ALS-causing genetic error."

The opposite effect also appeared: mice with normal motor neurons but with surrounding cells carrying an SOD1 mutation showed early signs of disease. Normal neurons, then, can apparently acquire something toxic from at-risk non-neuronal neighboring cells.

"So we’re seeing a real-life metaphor here," says Cleveland. "Living in a bad environment can damage good cells. And more important, restoring a better environment to ’bad’ neurons by surrounding them with healthy neighbors can significantly lessen toxic effects. In some cases, having normal cells completely stops motor neuron death."

Research conducted by Center scientist and team member Jean-Pierre Julien, Ph.D., at Laval University in Quebec was a key contribution to the results. Researchers Cleveland and Goldstein are both at the University of California, San Diego, where Cleveland heads the Laboratory of Cell Biology at the Ludwig Institute for Cancer Research.

The research was funded by the Packard Center for ALS Research at Johns Hopkins, Project ALS, The ALS Association, the U.S. National Institutes of Health, the Canadian Institutes of Health Research, The Angel Fund for ALS Research and the U.S. Veterans Administration.

Headquartered in Baltimore, the Robert Packard Center for ALS Research at Johns Hopkins is a collaboration of scientists worldwide who are working aggressively to develop new treatments and a cure for amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig’s disease. The Center is the only institution of its kind dedicated solely to the disease. Its research is meant to translate from the laboratory bench to the clinic in record time.

Joanna Downer | EurekAlert!
Further information:
http://www.hopkinsmedicine.org/

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>