Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

PET Scans Used to Determine Progression of HIV Infection

29.09.2003


Findings Could Lead to New Treatments of HIV Infection



Researchers from the Johns Hopkins Bloomberg School of Public Health and the Johns Hopkins School of Medicine used positron emission tomography (PET) scans to identify sites of replicating HIV in the lymphatic system of people recently infected with the virus. PET scan imaging is typically used to detect tumors. The researchers believe PET scans could lead to greater understanding of HIV disease and new methods for treating the infection. Their findings are published in the September 20, 2003, edition of The Lancet.

According to the study, the PET scans recorded activation of the lymph nodes, which are involved in the body’s immune response. Activation was most notable in lymph nodes in upper torso and neck areas of the body among participants recently infected with HIV. Nodes in the lower torso were involved to a lesser extent. Participants who were infected with HIV for a longer period and remained asymptomatic with low viral loads also had lymph node activation in the neck, upper torso and pelvic areas. The researchers observed a tight correlation between the viral replication and the lymph node activity on the PET signal.


Lead author Sujatha Iyengar, PhD, and David Schwartz, MD, PhD, senior investigator of the study, propose that PET scans could be used to locate the specific nodes where HIV is replicating and remove them or target them with radiation. “Although many systemic sites from which latent virus could be reactivated would be left, reactivation might not occur for months or years after removal of the active nodes, thereby allowing extended interruption of treatment for the disease. Despite the systemic nature of HIV infection, the sites of viral replication appear remarkably restricted to limited anatomic locations at any given time. This suggests microenvironmental niche selection in true Darwinian fashion,” noted Dr. Schwartz, who is an
associate professor with the School’s Department of Molecular Microbiology and Immunology.

“Equally important for the future of this technology is the observation that immune responses to vaccines can be anatomically localized and measured in normal individuals,” said Dr. Iyengar, who is a research associate with the Department of Molecular Microbiology and Immunology. “This could be invaluable in the evaluation of new vaccines and routes of administration.”

For the study, the researchers used PET scans to examine 23 people who were HIV-positive, 12 of whom had recently been infected. The other 11 had been infected for a long period of time, but none of the participants had any signs of disease or illness. The researchers also scanned eight non-infected individuals as a control group. They were given influenza vaccine to stimulate lymph node activation.

“Anatomical loci of HIV-associated immune activation and association of viraemia” was written by Sujatha Iyengar, Bennett Chin, Joseph B. Margolick, Beulah P. Sabundayo and David Schwartz.

Funding for the study was provided by grants from the National Institutes of Health, the Center for AIDS Research and the Alternatives Research Development Fund.

Public Affairs Media Contacts for the Johns Hopkins Bloomberg School of Public Health: Tim Parsons or Kenna Brigham at 410-955-6878 or paffairs@jhsph.edu.

Tim Parsons | JHU
Further information:
http://www.jhsph.edu/Press_Room/Press_Releases/HIV_PET_scan.html

More articles from Health and Medicine:

nachricht Chronic stress induces fatal organ dysfunctions via a new neural circuit
21.08.2017 | Hokkaido University

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>