Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

PET Scans Used to Determine Progression of HIV Infection

29.09.2003


Findings Could Lead to New Treatments of HIV Infection



Researchers from the Johns Hopkins Bloomberg School of Public Health and the Johns Hopkins School of Medicine used positron emission tomography (PET) scans to identify sites of replicating HIV in the lymphatic system of people recently infected with the virus. PET scan imaging is typically used to detect tumors. The researchers believe PET scans could lead to greater understanding of HIV disease and new methods for treating the infection. Their findings are published in the September 20, 2003, edition of The Lancet.

According to the study, the PET scans recorded activation of the lymph nodes, which are involved in the body’s immune response. Activation was most notable in lymph nodes in upper torso and neck areas of the body among participants recently infected with HIV. Nodes in the lower torso were involved to a lesser extent. Participants who were infected with HIV for a longer period and remained asymptomatic with low viral loads also had lymph node activation in the neck, upper torso and pelvic areas. The researchers observed a tight correlation between the viral replication and the lymph node activity on the PET signal.


Lead author Sujatha Iyengar, PhD, and David Schwartz, MD, PhD, senior investigator of the study, propose that PET scans could be used to locate the specific nodes where HIV is replicating and remove them or target them with radiation. “Although many systemic sites from which latent virus could be reactivated would be left, reactivation might not occur for months or years after removal of the active nodes, thereby allowing extended interruption of treatment for the disease. Despite the systemic nature of HIV infection, the sites of viral replication appear remarkably restricted to limited anatomic locations at any given time. This suggests microenvironmental niche selection in true Darwinian fashion,” noted Dr. Schwartz, who is an
associate professor with the School’s Department of Molecular Microbiology and Immunology.

“Equally important for the future of this technology is the observation that immune responses to vaccines can be anatomically localized and measured in normal individuals,” said Dr. Iyengar, who is a research associate with the Department of Molecular Microbiology and Immunology. “This could be invaluable in the evaluation of new vaccines and routes of administration.”

For the study, the researchers used PET scans to examine 23 people who were HIV-positive, 12 of whom had recently been infected. The other 11 had been infected for a long period of time, but none of the participants had any signs of disease or illness. The researchers also scanned eight non-infected individuals as a control group. They were given influenza vaccine to stimulate lymph node activation.

“Anatomical loci of HIV-associated immune activation and association of viraemia” was written by Sujatha Iyengar, Bennett Chin, Joseph B. Margolick, Beulah P. Sabundayo and David Schwartz.

Funding for the study was provided by grants from the National Institutes of Health, the Center for AIDS Research and the Alternatives Research Development Fund.

Public Affairs Media Contacts for the Johns Hopkins Bloomberg School of Public Health: Tim Parsons or Kenna Brigham at 410-955-6878 or paffairs@jhsph.edu.

Tim Parsons | JHU
Further information:
http://www.jhsph.edu/Press_Room/Press_Releases/HIV_PET_scan.html

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>