Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

PET Scans Used to Determine Progression of HIV Infection

29.09.2003


Findings Could Lead to New Treatments of HIV Infection



Researchers from the Johns Hopkins Bloomberg School of Public Health and the Johns Hopkins School of Medicine used positron emission tomography (PET) scans to identify sites of replicating HIV in the lymphatic system of people recently infected with the virus. PET scan imaging is typically used to detect tumors. The researchers believe PET scans could lead to greater understanding of HIV disease and new methods for treating the infection. Their findings are published in the September 20, 2003, edition of The Lancet.

According to the study, the PET scans recorded activation of the lymph nodes, which are involved in the body’s immune response. Activation was most notable in lymph nodes in upper torso and neck areas of the body among participants recently infected with HIV. Nodes in the lower torso were involved to a lesser extent. Participants who were infected with HIV for a longer period and remained asymptomatic with low viral loads also had lymph node activation in the neck, upper torso and pelvic areas. The researchers observed a tight correlation between the viral replication and the lymph node activity on the PET signal.


Lead author Sujatha Iyengar, PhD, and David Schwartz, MD, PhD, senior investigator of the study, propose that PET scans could be used to locate the specific nodes where HIV is replicating and remove them or target them with radiation. “Although many systemic sites from which latent virus could be reactivated would be left, reactivation might not occur for months or years after removal of the active nodes, thereby allowing extended interruption of treatment for the disease. Despite the systemic nature of HIV infection, the sites of viral replication appear remarkably restricted to limited anatomic locations at any given time. This suggests microenvironmental niche selection in true Darwinian fashion,” noted Dr. Schwartz, who is an
associate professor with the School’s Department of Molecular Microbiology and Immunology.

“Equally important for the future of this technology is the observation that immune responses to vaccines can be anatomically localized and measured in normal individuals,” said Dr. Iyengar, who is a research associate with the Department of Molecular Microbiology and Immunology. “This could be invaluable in the evaluation of new vaccines and routes of administration.”

For the study, the researchers used PET scans to examine 23 people who were HIV-positive, 12 of whom had recently been infected. The other 11 had been infected for a long period of time, but none of the participants had any signs of disease or illness. The researchers also scanned eight non-infected individuals as a control group. They were given influenza vaccine to stimulate lymph node activation.

“Anatomical loci of HIV-associated immune activation and association of viraemia” was written by Sujatha Iyengar, Bennett Chin, Joseph B. Margolick, Beulah P. Sabundayo and David Schwartz.

Funding for the study was provided by grants from the National Institutes of Health, the Center for AIDS Research and the Alternatives Research Development Fund.

Public Affairs Media Contacts for the Johns Hopkins Bloomberg School of Public Health: Tim Parsons or Kenna Brigham at 410-955-6878 or paffairs@jhsph.edu.

Tim Parsons | JHU
Further information:
http://www.jhsph.edu/Press_Room/Press_Releases/HIV_PET_scan.html

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>