Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

PET Scans Used to Determine Progression of HIV Infection

29.09.2003


Findings Could Lead to New Treatments of HIV Infection



Researchers from the Johns Hopkins Bloomberg School of Public Health and the Johns Hopkins School of Medicine used positron emission tomography (PET) scans to identify sites of replicating HIV in the lymphatic system of people recently infected with the virus. PET scan imaging is typically used to detect tumors. The researchers believe PET scans could lead to greater understanding of HIV disease and new methods for treating the infection. Their findings are published in the September 20, 2003, edition of The Lancet.

According to the study, the PET scans recorded activation of the lymph nodes, which are involved in the body’s immune response. Activation was most notable in lymph nodes in upper torso and neck areas of the body among participants recently infected with HIV. Nodes in the lower torso were involved to a lesser extent. Participants who were infected with HIV for a longer period and remained asymptomatic with low viral loads also had lymph node activation in the neck, upper torso and pelvic areas. The researchers observed a tight correlation between the viral replication and the lymph node activity on the PET signal.


Lead author Sujatha Iyengar, PhD, and David Schwartz, MD, PhD, senior investigator of the study, propose that PET scans could be used to locate the specific nodes where HIV is replicating and remove them or target them with radiation. “Although many systemic sites from which latent virus could be reactivated would be left, reactivation might not occur for months or years after removal of the active nodes, thereby allowing extended interruption of treatment for the disease. Despite the systemic nature of HIV infection, the sites of viral replication appear remarkably restricted to limited anatomic locations at any given time. This suggests microenvironmental niche selection in true Darwinian fashion,” noted Dr. Schwartz, who is an
associate professor with the School’s Department of Molecular Microbiology and Immunology.

“Equally important for the future of this technology is the observation that immune responses to vaccines can be anatomically localized and measured in normal individuals,” said Dr. Iyengar, who is a research associate with the Department of Molecular Microbiology and Immunology. “This could be invaluable in the evaluation of new vaccines and routes of administration.”

For the study, the researchers used PET scans to examine 23 people who were HIV-positive, 12 of whom had recently been infected. The other 11 had been infected for a long period of time, but none of the participants had any signs of disease or illness. The researchers also scanned eight non-infected individuals as a control group. They were given influenza vaccine to stimulate lymph node activation.

“Anatomical loci of HIV-associated immune activation and association of viraemia” was written by Sujatha Iyengar, Bennett Chin, Joseph B. Margolick, Beulah P. Sabundayo and David Schwartz.

Funding for the study was provided by grants from the National Institutes of Health, the Center for AIDS Research and the Alternatives Research Development Fund.

Public Affairs Media Contacts for the Johns Hopkins Bloomberg School of Public Health: Tim Parsons or Kenna Brigham at 410-955-6878 or paffairs@jhsph.edu.

Tim Parsons | JHU
Further information:
http://www.jhsph.edu/Press_Room/Press_Releases/HIV_PET_scan.html

More articles from Health and Medicine:

nachricht Correct connections are crucial
26.06.2017 | Charité - Universitätsmedizin Berlin

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Extensive Funding for Research on Chromatin, Adrenal Gland, and Cancer Therapy

28.06.2017 | Awards Funding

Predicting eruptions using satellites and math

28.06.2017 | Earth Sciences

Extremely fine measurements of motion in orbiting supermassive black holes

28.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>