Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

PET Scans Used to Determine Progression of HIV Infection

29.09.2003


Findings Could Lead to New Treatments of HIV Infection



Researchers from the Johns Hopkins Bloomberg School of Public Health and the Johns Hopkins School of Medicine used positron emission tomography (PET) scans to identify sites of replicating HIV in the lymphatic system of people recently infected with the virus. PET scan imaging is typically used to detect tumors. The researchers believe PET scans could lead to greater understanding of HIV disease and new methods for treating the infection. Their findings are published in the September 20, 2003, edition of The Lancet.

According to the study, the PET scans recorded activation of the lymph nodes, which are involved in the body’s immune response. Activation was most notable in lymph nodes in upper torso and neck areas of the body among participants recently infected with HIV. Nodes in the lower torso were involved to a lesser extent. Participants who were infected with HIV for a longer period and remained asymptomatic with low viral loads also had lymph node activation in the neck, upper torso and pelvic areas. The researchers observed a tight correlation between the viral replication and the lymph node activity on the PET signal.


Lead author Sujatha Iyengar, PhD, and David Schwartz, MD, PhD, senior investigator of the study, propose that PET scans could be used to locate the specific nodes where HIV is replicating and remove them or target them with radiation. “Although many systemic sites from which latent virus could be reactivated would be left, reactivation might not occur for months or years after removal of the active nodes, thereby allowing extended interruption of treatment for the disease. Despite the systemic nature of HIV infection, the sites of viral replication appear remarkably restricted to limited anatomic locations at any given time. This suggests microenvironmental niche selection in true Darwinian fashion,” noted Dr. Schwartz, who is an
associate professor with the School’s Department of Molecular Microbiology and Immunology.

“Equally important for the future of this technology is the observation that immune responses to vaccines can be anatomically localized and measured in normal individuals,” said Dr. Iyengar, who is a research associate with the Department of Molecular Microbiology and Immunology. “This could be invaluable in the evaluation of new vaccines and routes of administration.”

For the study, the researchers used PET scans to examine 23 people who were HIV-positive, 12 of whom had recently been infected. The other 11 had been infected for a long period of time, but none of the participants had any signs of disease or illness. The researchers also scanned eight non-infected individuals as a control group. They were given influenza vaccine to stimulate lymph node activation.

“Anatomical loci of HIV-associated immune activation and association of viraemia” was written by Sujatha Iyengar, Bennett Chin, Joseph B. Margolick, Beulah P. Sabundayo and David Schwartz.

Funding for the study was provided by grants from the National Institutes of Health, the Center for AIDS Research and the Alternatives Research Development Fund.

Public Affairs Media Contacts for the Johns Hopkins Bloomberg School of Public Health: Tim Parsons or Kenna Brigham at 410-955-6878 or paffairs@jhsph.edu.

Tim Parsons | JHU
Further information:
http://www.jhsph.edu/Press_Room/Press_Releases/HIV_PET_scan.html

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>