Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Technique reduces time spent on radiation doses

17.09.2003


Researchers at Washington University in St. Louis have developed a technique that drastically decreases the time a radiologist spends calculating radiation dosages and also provides a more carefully controlled dosage with less damage to nearby healthy tissues.


Radiologists some day may be able to calculate radiation doses more quickly and efficiently thanks to a technique developed by Washington University researchers



Victor Wickerhauser, Ph.D., Washington University professor of mathematics in Arts & Sciences, and Joseph O. Deasy, Ph.D., assistant professor of radiation oncology in the School of Medicine, have applied a mathematical tool called wavelet analysis to radiation dose distributions simulations and have sped up the dose calculations by a factor of two or more over the standby dose calculation, called a Monte Carlo dose calculation method.

Wavelet analysis is a sophisticated kind of harmonic analysis that is integral in analyzing and compressing data -- video, sound, or photographic, for instance -- for a wide range of applications.


"Instead of taking hours, it takes minutes," said Wickerhauser, a pioneer in wavelet analysis who has applied the tool on analysis of fingerprints for the FBI, among many other applications. "The speed allows the radiation dose to be controlled more carefully, which will provide less damage to adjacent healthy tissues."

To get an accurate estimation of how much radiation should be given during a treatment, a dose distribution simulation first is performed. This involves a model of radiation particles that simulates how the particles scatter over each other and other molecules. The Monte Carlo dose calculation method requires calculating 100 million particles to come up with a simulated dose. Wickerhauser and Deasy have used wavelets to speed the calculation up to where only one to four million particles are needed to come up with the simulation.

The technique of simulating radiation dose distributions has long been a mainstay in radiation oncology because radiologists don’t want to irradiate nearby healthy tissue, especially if the cancer is near vital areas such as the ovary, bone marrow, spinal cord or the brain.

The researchers have submitted the wavelet-based simulation algorithm used for the wavelet analysis for a patent. Much of the programming for the algorithm was performed by Mathieu Picard, a visiting undergraduate student working on his honor’s thesis for the Ecole Polytechnique, Palaiseau, France, considered France’s finest technical university. The three co-authored a paper describing the technique in Medical Physics, 29 (10), October 2002. The research was supported by a grant from the National Cancer Institute.

Wickerhauser collaborates with researchers worldwide on problems that might better be solved by wavelet analysis. The radiation dosage distribution problem was a good candidate for wavelet-based simulation because wavelets give good fast approximations to smooth data fields with "rough" noise, such as is produced by Monte Carlo simulations with relatively few particles. Wavelets take out more of the roughness while preserving more of the true sharp features of the "smooth" function than other approximations.

"Wavelet approximations take rough things and give you smooth things, without destroying sharpness," Wickerhauser said.

Tony Fitzpatrick | WUSTL
Further information:
http://news-info.wustl.edu/tips/page/normal/333.html

More articles from Health and Medicine:

nachricht Custom-tailored strategy against glioblastomas
26.09.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New leukemia treatment offers hope
23.09.2016 | King Abdullah University of Science and Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

 
Latest News

New Multiferroic Materials from Building Blocks

29.09.2016 | Materials Sciences

Silicon Fluorescent Material Developed Enabling Observations under a Bright “Biological Optical Window”

29.09.2016 | Materials Sciences

X-shape Bio-inspired Structures

29.09.2016 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>