Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Technique reduces time spent on radiation doses

17.09.2003


Researchers at Washington University in St. Louis have developed a technique that drastically decreases the time a radiologist spends calculating radiation dosages and also provides a more carefully controlled dosage with less damage to nearby healthy tissues.


Radiologists some day may be able to calculate radiation doses more quickly and efficiently thanks to a technique developed by Washington University researchers



Victor Wickerhauser, Ph.D., Washington University professor of mathematics in Arts & Sciences, and Joseph O. Deasy, Ph.D., assistant professor of radiation oncology in the School of Medicine, have applied a mathematical tool called wavelet analysis to radiation dose distributions simulations and have sped up the dose calculations by a factor of two or more over the standby dose calculation, called a Monte Carlo dose calculation method.

Wavelet analysis is a sophisticated kind of harmonic analysis that is integral in analyzing and compressing data -- video, sound, or photographic, for instance -- for a wide range of applications.


"Instead of taking hours, it takes minutes," said Wickerhauser, a pioneer in wavelet analysis who has applied the tool on analysis of fingerprints for the FBI, among many other applications. "The speed allows the radiation dose to be controlled more carefully, which will provide less damage to adjacent healthy tissues."

To get an accurate estimation of how much radiation should be given during a treatment, a dose distribution simulation first is performed. This involves a model of radiation particles that simulates how the particles scatter over each other and other molecules. The Monte Carlo dose calculation method requires calculating 100 million particles to come up with a simulated dose. Wickerhauser and Deasy have used wavelets to speed the calculation up to where only one to four million particles are needed to come up with the simulation.

The technique of simulating radiation dose distributions has long been a mainstay in radiation oncology because radiologists don’t want to irradiate nearby healthy tissue, especially if the cancer is near vital areas such as the ovary, bone marrow, spinal cord or the brain.

The researchers have submitted the wavelet-based simulation algorithm used for the wavelet analysis for a patent. Much of the programming for the algorithm was performed by Mathieu Picard, a visiting undergraduate student working on his honor’s thesis for the Ecole Polytechnique, Palaiseau, France, considered France’s finest technical university. The three co-authored a paper describing the technique in Medical Physics, 29 (10), October 2002. The research was supported by a grant from the National Cancer Institute.

Wickerhauser collaborates with researchers worldwide on problems that might better be solved by wavelet analysis. The radiation dosage distribution problem was a good candidate for wavelet-based simulation because wavelets give good fast approximations to smooth data fields with "rough" noise, such as is produced by Monte Carlo simulations with relatively few particles. Wavelets take out more of the roughness while preserving more of the true sharp features of the "smooth" function than other approximations.

"Wavelet approximations take rough things and give you smooth things, without destroying sharpness," Wickerhauser said.

Tony Fitzpatrick | WUSTL
Further information:
http://news-info.wustl.edu/tips/page/normal/333.html

More articles from Health and Medicine:

nachricht New study points the way to therapy for rare cancer that targets the young
22.11.2017 | Rockefeller University

nachricht Penn study identifies new malaria parasites in wild bonobos
21.11.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>