Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Technology Could Improve Breast Cancer Detection

17.09.2003


Teams of radiologists, scientists and radiographers from The University of Aberdeen, The University of Manchester and The South Manchester University Hospitals Trust will be using the R2 Technology ImageChecker to help detect potentially cancerous areas on mammograms.



The ImageChecker helps radiologists & radiographers in a similar manner to a PC spellchecker by automatically detecting and prompting suspicious areas on mammograms. It acts as a second pair of eyes and therefore could help to make mammogram checks more accurate.

It is hoped that the technology could reduce oversights and bring about earlier detection of cancerous lesions – both of which would reduce patient suffering and treatment costs.


The technology could also potentially alleviate the shortage of radiologists and radiographers which currently exists in the UK. At the moment, many mammograms are checked by two radiologists/radiographers, but the study will look at whether a single radiologist/radiographer prompted by the ImageChecker can produce the same or better results. If this is the case, savings would result.

The joint study is being led by Professor Fiona Gilbert, Head of Radiology at The University of Aberdeen, Dr Sue Astley, Senior Lecturer in Imaging Science at The University of Manchester, Professor Stephen Duffy, Professor of Cancer Screening, Queen Mary College, London and Dr Caroline Boggis, Consultant Radiologist at South Manchester University Hospitals Trust. The study is being funded by Cancer Research UK and the NHS Breast Screening Programme (NHSBSP).

Commenting on the study Professor Gilbert said: “Recent enhancements to the NHS Breast Screening Programme, including the requirement for additional mammogram views (Note 1) and an extended age range of women invited to screening (Note 2) , coupled with a natural increase (Note 3) in the eligible screening population mean that screening volumes are set to increase dramatically.

“There is already a shortage of radiologists and radiographers and in the face of this burgeoning demand, we anticipate problems in delivering the service. This prompting technology needs to be examined in the NHSBSP setting, as it could potentially provide a solution to the shortage of film readers. The research team is confident of the importance and timeliness of this study.”

Dr. Astley from The University of Manchester added: “We will investigate whether individual radiologists, prompted by the ImageChecker, can match the level of detection currently considered to be the gold standard in the UK.

“Known as double reading with arbitration, this gold standard involves independent reading of each mammogram by two radiologists or radiographers with referral to a third radiologist if interpretation differs. We believe that the probability–coded prompt markers provided by the system could permit film readers to utilise the prompting information more effectively. We look forward to the results.”

Dr. Caroline Boggis commented: “This study will evaluate the contribution of R2 / CAD to avoiding potential oversights. If effectiveness is established, the implication will be that the use of CAD will improve confidence in breast screening decisions."

The ImageChecker system digitises and analyses mammograms, displaying its findings on a screen adjacent to the mammogram viewer. Suspicious masses and micro calcifications are indicated by different symbols, sized according to the degree of concern.

The film reader first makes an unprompted assessment of the original mammogram, then consults the CAD prompt image and if appropriate, revises the assessment and decision to recall the patient or not, in light of the additional information.

Jo Grady | alfa
Further information:
http://news.man.ac.uk

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>