Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New Technology Could Improve Breast Cancer Detection


Teams of radiologists, scientists and radiographers from The University of Aberdeen, The University of Manchester and The South Manchester University Hospitals Trust will be using the R2 Technology ImageChecker to help detect potentially cancerous areas on mammograms.

The ImageChecker helps radiologists & radiographers in a similar manner to a PC spellchecker by automatically detecting and prompting suspicious areas on mammograms. It acts as a second pair of eyes and therefore could help to make mammogram checks more accurate.

It is hoped that the technology could reduce oversights and bring about earlier detection of cancerous lesions – both of which would reduce patient suffering and treatment costs.

The technology could also potentially alleviate the shortage of radiologists and radiographers which currently exists in the UK. At the moment, many mammograms are checked by two radiologists/radiographers, but the study will look at whether a single radiologist/radiographer prompted by the ImageChecker can produce the same or better results. If this is the case, savings would result.

The joint study is being led by Professor Fiona Gilbert, Head of Radiology at The University of Aberdeen, Dr Sue Astley, Senior Lecturer in Imaging Science at The University of Manchester, Professor Stephen Duffy, Professor of Cancer Screening, Queen Mary College, London and Dr Caroline Boggis, Consultant Radiologist at South Manchester University Hospitals Trust. The study is being funded by Cancer Research UK and the NHS Breast Screening Programme (NHSBSP).

Commenting on the study Professor Gilbert said: “Recent enhancements to the NHS Breast Screening Programme, including the requirement for additional mammogram views (Note 1) and an extended age range of women invited to screening (Note 2) , coupled with a natural increase (Note 3) in the eligible screening population mean that screening volumes are set to increase dramatically.

“There is already a shortage of radiologists and radiographers and in the face of this burgeoning demand, we anticipate problems in delivering the service. This prompting technology needs to be examined in the NHSBSP setting, as it could potentially provide a solution to the shortage of film readers. The research team is confident of the importance and timeliness of this study.”

Dr. Astley from The University of Manchester added: “We will investigate whether individual radiologists, prompted by the ImageChecker, can match the level of detection currently considered to be the gold standard in the UK.

“Known as double reading with arbitration, this gold standard involves independent reading of each mammogram by two radiologists or radiographers with referral to a third radiologist if interpretation differs. We believe that the probability–coded prompt markers provided by the system could permit film readers to utilise the prompting information more effectively. We look forward to the results.”

Dr. Caroline Boggis commented: “This study will evaluate the contribution of R2 / CAD to avoiding potential oversights. If effectiveness is established, the implication will be that the use of CAD will improve confidence in breast screening decisions."

The ImageChecker system digitises and analyses mammograms, displaying its findings on a screen adjacent to the mammogram viewer. Suspicious masses and micro calcifications are indicated by different symbols, sized according to the degree of concern.

The film reader first makes an unprompted assessment of the original mammogram, then consults the CAD prompt image and if appropriate, revises the assessment and decision to recall the patient or not, in light of the additional information.

Jo Grady | alfa
Further information:

More articles from Health and Medicine:

nachricht Inflammation Triggers Unsustainable Immune Response to Chronic Viral Infection
24.10.2016 | Universität Basel

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>