Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pancreatic cancer linked to developmental cell signaling pathway

15.09.2003


Finding suggests possible treatment approach for highly lethal disease



Scientists at UCSF and Massachusetts General Hospital (MGH) have found strong evidence that a cell signaling pathway active in embryonic development plays a crucial role in pancreatic cancer. The finding provides the first model of the development and growth of pancreatic cancer and suggests a clear route for treatment of this lethal malignancy. The research is being posted online today by the journal Nature, prior to publication in the print journal.

Pancreatic cancer is the fourth leading cause of cancer deaths in the U.S.; each year 30,000 cases are diagnosed, and for the majority of patients the disease is incurable.


Using human cell lines, the researchers showed that pancreatic cancer growth can be arrested by chemically blocking a signaling pathway that previously had been known to be active in human embryonic development. Known as the Hedgehog pathway, this cascade of chemical steps allows proteins to pass along a signal that ultimately leads to changes in gene activity and has already been linked to several other types of cancer.

The research highlights the link between embryonic development and cancer. Proteins that normally regulate rapid growth in the embryo may often be responsible for the out-of-control cell divisions in cancer, the scientists say.

"Surgery has represented the only possible cure for pancreatic cancer patients," said Sarah P. Thayer, MD, PhD, of MGH, co-first and co-senior author of the paper. "However, the majority of patients are diagnosed at an incurable stage of their disease. We have been stymied by our inability to diagnose patients earlier and offer effective treatments."

Thayer deals principally with the surgical management of pancreatic cancer patients, and the disease is the main focus of her research.

Although much more work needs to be done to determine whether the research can be applied to clinical practice, "identifying the role of this pathway in pancreatic cancer offers hope for developing treatments," said Matthias Hebrok, PhD, assistant professor of medicine in UCSF’s Diabetes Center. "It also underscores how studying organ development in embryos can provide clues to cancer, diabetes and other serious diseases." Hebrok is co-senior author on the paper.

"Our funding of this research emphasizes the importance of understanding the signals and genetic networks that regulate development of the pancreatic cells. These insights will prove relevant for activating beta cell regeneration, and for understanding how beta cell growth is disordered in pancreatic malignancies," said Richard Insel, MD, Vice President, Research, Juvenile Diabetes Research Foundation International.

Normally, Hedgehog proteins influence early development by binding to another protein on the cell surface, known as the Patched receptor. This union triggers a series of chemical changes, leading to gene activity in the nucleus. Mutations in the Hedgehog pathway are known to cause several types of cancer, and this research adds pancreatic cancer to the list of serious outcomes of aberrant Hedgehog activity.

In one part of the study, the scientists compared normal adult human pancreatic tissue to specimens from patients with pancreatic cancer. No Hedgehog protein was detected in the normal tissue, but it was found in 70 percent of precancerous and cancerous specimens. Furthermore, key genes in the Hedgehog pathway were also found to be overexpressed.

"Mis-expression of the Hedgehog pathway in transgenic mice resulted in the formation of abnormal pancreatic cells that resembled human precursor lesions, suggesting that this pathway may have a role in the initiation of this cancer," said Thayer, an instructor in surgery at Harvard Medical School. "However, its true role in pancreatic cancer remains to be determined."

The researchers also examined 26 human pancreatic cancer cell lines and found Hedgehog activity in all of them. When the Hedgehog pathway was blocked experimentally, the cancer was killed half of the time. Cancer-causing mutations "downstream" from the Hedgehog pathway may cause the other half of the cancers, the researchers think. The scientists then transplanted pancreatic cancer cells into mice, creating tumors. They injected the mice with an inhibitor of the Hedgehog pathway, which resulted in a 50 to 60 percent reduction in tumor size after seven days.

The research results -- death of tumor cells both in the Petri dish and in animals --suggest that this may one day hold promise as a treatment avenue, the researchers say.

Unfortunately, the inhibitor used in this research is not a practical drug for clinical use, they point out. But since abnormalities in Hedgehog expression have already been linked to gliomas, basal cell carcinoma and very recently, small cell lung cancer, university and commercial labs are screening for more effective Hedgehog blockers.

"If Hedgehog is involved in pancreatic cancer, these other blockers might offer a bright prospect in treating a disease that has eluded effective treatment up to now," Hebrok said.

A second paper in the same issue of Nature reports that Hedgehog signaling is active in pancreatic and other cancers along the gastrointestinal tract. These results provide further evidence that deregulation of this pathway is a more general phenomenon than previously anticipated.


###
Marina Pasca di Magliano, Ph.D., of the UCSF Diabetes Center, is co-first author on the paper with Thayer. Other UCSF co-authors are graduate students Patrick W. Heiser and Yan Ping Qi, of the Diabetes Center; and Stephan Grysin, PhD, and Martin McMahon, PhD, of the Cancer Research Institute. Co-authors at MGH and HMS are Drucilla Roberts, MD; Gregory Lauwers, MD; Corinne Nielsen, MS; Carlos Fernández-del Castillo, MD, Bozena Antoniu, MS; Vijay Yajnik, MD, Ph.D; and Andrew Warshaw, MD, professor and chair, Department of Surgery.

The research was supported by grants from the Lustgarten Foundation for Pancreatic Cancer Research, the National Institutes of Health, and the Juvenile Diabetes Research Foundation.

Wallace Ravven | EurekAlert!
Further information:
http://www.ucsf.edu/

More articles from Health and Medicine:

nachricht NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures
17.11.2017 | National Institute of Standards and Technology (NIST)

nachricht High speed video recording precisely measures blood cell velocity
15.11.2017 | ITMO University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Antarctic landscape insights keep ice loss forecasts on the radar

20.11.2017 | Earth Sciences

Filling the gap: High-latitude volcanic eruptions also have global impact

20.11.2017 | Earth Sciences

Water world

20.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>