Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pancreatic cancer linked to developmental cell signaling pathway

15.09.2003


Finding suggests possible treatment approach for highly lethal disease



Scientists at UCSF and Massachusetts General Hospital (MGH) have found strong evidence that a cell signaling pathway active in embryonic development plays a crucial role in pancreatic cancer. The finding provides the first model of the development and growth of pancreatic cancer and suggests a clear route for treatment of this lethal malignancy. The research is being posted online today by the journal Nature, prior to publication in the print journal.

Pancreatic cancer is the fourth leading cause of cancer deaths in the U.S.; each year 30,000 cases are diagnosed, and for the majority of patients the disease is incurable.


Using human cell lines, the researchers showed that pancreatic cancer growth can be arrested by chemically blocking a signaling pathway that previously had been known to be active in human embryonic development. Known as the Hedgehog pathway, this cascade of chemical steps allows proteins to pass along a signal that ultimately leads to changes in gene activity and has already been linked to several other types of cancer.

The research highlights the link between embryonic development and cancer. Proteins that normally regulate rapid growth in the embryo may often be responsible for the out-of-control cell divisions in cancer, the scientists say.

"Surgery has represented the only possible cure for pancreatic cancer patients," said Sarah P. Thayer, MD, PhD, of MGH, co-first and co-senior author of the paper. "However, the majority of patients are diagnosed at an incurable stage of their disease. We have been stymied by our inability to diagnose patients earlier and offer effective treatments."

Thayer deals principally with the surgical management of pancreatic cancer patients, and the disease is the main focus of her research.

Although much more work needs to be done to determine whether the research can be applied to clinical practice, "identifying the role of this pathway in pancreatic cancer offers hope for developing treatments," said Matthias Hebrok, PhD, assistant professor of medicine in UCSF’s Diabetes Center. "It also underscores how studying organ development in embryos can provide clues to cancer, diabetes and other serious diseases." Hebrok is co-senior author on the paper.

"Our funding of this research emphasizes the importance of understanding the signals and genetic networks that regulate development of the pancreatic cells. These insights will prove relevant for activating beta cell regeneration, and for understanding how beta cell growth is disordered in pancreatic malignancies," said Richard Insel, MD, Vice President, Research, Juvenile Diabetes Research Foundation International.

Normally, Hedgehog proteins influence early development by binding to another protein on the cell surface, known as the Patched receptor. This union triggers a series of chemical changes, leading to gene activity in the nucleus. Mutations in the Hedgehog pathway are known to cause several types of cancer, and this research adds pancreatic cancer to the list of serious outcomes of aberrant Hedgehog activity.

In one part of the study, the scientists compared normal adult human pancreatic tissue to specimens from patients with pancreatic cancer. No Hedgehog protein was detected in the normal tissue, but it was found in 70 percent of precancerous and cancerous specimens. Furthermore, key genes in the Hedgehog pathway were also found to be overexpressed.

"Mis-expression of the Hedgehog pathway in transgenic mice resulted in the formation of abnormal pancreatic cells that resembled human precursor lesions, suggesting that this pathway may have a role in the initiation of this cancer," said Thayer, an instructor in surgery at Harvard Medical School. "However, its true role in pancreatic cancer remains to be determined."

The researchers also examined 26 human pancreatic cancer cell lines and found Hedgehog activity in all of them. When the Hedgehog pathway was blocked experimentally, the cancer was killed half of the time. Cancer-causing mutations "downstream" from the Hedgehog pathway may cause the other half of the cancers, the researchers think. The scientists then transplanted pancreatic cancer cells into mice, creating tumors. They injected the mice with an inhibitor of the Hedgehog pathway, which resulted in a 50 to 60 percent reduction in tumor size after seven days.

The research results -- death of tumor cells both in the Petri dish and in animals --suggest that this may one day hold promise as a treatment avenue, the researchers say.

Unfortunately, the inhibitor used in this research is not a practical drug for clinical use, they point out. But since abnormalities in Hedgehog expression have already been linked to gliomas, basal cell carcinoma and very recently, small cell lung cancer, university and commercial labs are screening for more effective Hedgehog blockers.

"If Hedgehog is involved in pancreatic cancer, these other blockers might offer a bright prospect in treating a disease that has eluded effective treatment up to now," Hebrok said.

A second paper in the same issue of Nature reports that Hedgehog signaling is active in pancreatic and other cancers along the gastrointestinal tract. These results provide further evidence that deregulation of this pathway is a more general phenomenon than previously anticipated.


###
Marina Pasca di Magliano, Ph.D., of the UCSF Diabetes Center, is co-first author on the paper with Thayer. Other UCSF co-authors are graduate students Patrick W. Heiser and Yan Ping Qi, of the Diabetes Center; and Stephan Grysin, PhD, and Martin McMahon, PhD, of the Cancer Research Institute. Co-authors at MGH and HMS are Drucilla Roberts, MD; Gregory Lauwers, MD; Corinne Nielsen, MS; Carlos Fernández-del Castillo, MD, Bozena Antoniu, MS; Vijay Yajnik, MD, Ph.D; and Andrew Warshaw, MD, professor and chair, Department of Surgery.

The research was supported by grants from the Lustgarten Foundation for Pancreatic Cancer Research, the National Institutes of Health, and the Juvenile Diabetes Research Foundation.

Wallace Ravven | EurekAlert!
Further information:
http://www.ucsf.edu/

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>