Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stem cell therapy for myocardial repair & regeneration

02.09.2003


ESC Congress 2003



Heart attack and the resulting heart failure is still one of the leading causes of death in the western world. Therefore, new theraepeutical approaches to restore damaged heart tissue are indispensable. Prof. Hescheler’s research group has been working with murine embryonic stem cells for over 14 years now and was the first group worldwide to obviously measure physiological functions on embryonic stem cells.

Recently his group demonstrated that cardiac precursor cells, especially differentiated out of pluripotent embryonic stem cells and injected in infarcted heart tissue, are able to build up new functioning heart muscle tissue.


Embryonic stem cells can differentiate into nearly 200 different tissues. The main focus in his institute in Cologne is placed on the special development of so called cardiac precursor cells, “fore-runners” of differentiated, adult heart muscle cells. But how can we manage to lead many early embryonic stem cells on a physiological way to become fresh functioning heart cells?

For this reason many molecular biological steps are necessary, including some genetic “tricks”. At first a special protein-promotor is combined, which only works in cardiac precursor cells, with a green fluoescent protein, which stems from an atlantic jellyfish. If a cardiac precursor cell develops, this cell can be identifed by its green colour in the fluorescent microscope.

Furthermore to this “genetic double-construct” a gene is bound, which makes the cardiac precursor cells resistant against special antibiotics. If the antibiotics are then given into the cell suspension, only cardiac precursor cells survive.

In a mouse model a heart-attack-like damage by cryoinfarction is induced and the prepared cells injected into the infarcted area. After two weeks the heart is examined and wonderful green fluorescent tissue can be found, where before only dead material had been.

The physiological engraftment of the cells can be by different investigations such as echocardiography, heart-catheterization and many cellular processes. Even better: a significant benefit in the survival rate of infarcted and then cell-transplanted mice compared to animals without the transplantation can be proven.

Due to the promising results, the same will be performed on human embryonic stem cells. Prof. Hescheler’s group is one of three in Germany, found to be ethically sound and allowed by the government to import human embryonic stem cells for scientific purposes.

Professor Dr. med. Jürgen Hescheler
Institute of Physiology at the University of Cologne, Cologne
Germany

Important: This press release accompanies both a presentation and an ESC press conference given at the ESC Congress 2003. Written by the investigator himself/herself, this press release does not necessarily reflect the opinion of the European Society of Cardiology

Camilla Dormer | alfa
Further information:
http://www.escardio.org

More articles from Health and Medicine:

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

nachricht The strange double life of Dab2
10.01.2017 | University of Miami Miller School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>