Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stem cell therapy for myocardial repair & regeneration

02.09.2003


ESC Congress 2003



Heart attack and the resulting heart failure is still one of the leading causes of death in the western world. Therefore, new theraepeutical approaches to restore damaged heart tissue are indispensable. Prof. Hescheler’s research group has been working with murine embryonic stem cells for over 14 years now and was the first group worldwide to obviously measure physiological functions on embryonic stem cells.

Recently his group demonstrated that cardiac precursor cells, especially differentiated out of pluripotent embryonic stem cells and injected in infarcted heart tissue, are able to build up new functioning heart muscle tissue.


Embryonic stem cells can differentiate into nearly 200 different tissues. The main focus in his institute in Cologne is placed on the special development of so called cardiac precursor cells, “fore-runners” of differentiated, adult heart muscle cells. But how can we manage to lead many early embryonic stem cells on a physiological way to become fresh functioning heart cells?

For this reason many molecular biological steps are necessary, including some genetic “tricks”. At first a special protein-promotor is combined, which only works in cardiac precursor cells, with a green fluoescent protein, which stems from an atlantic jellyfish. If a cardiac precursor cell develops, this cell can be identifed by its green colour in the fluorescent microscope.

Furthermore to this “genetic double-construct” a gene is bound, which makes the cardiac precursor cells resistant against special antibiotics. If the antibiotics are then given into the cell suspension, only cardiac precursor cells survive.

In a mouse model a heart-attack-like damage by cryoinfarction is induced and the prepared cells injected into the infarcted area. After two weeks the heart is examined and wonderful green fluorescent tissue can be found, where before only dead material had been.

The physiological engraftment of the cells can be by different investigations such as echocardiography, heart-catheterization and many cellular processes. Even better: a significant benefit in the survival rate of infarcted and then cell-transplanted mice compared to animals without the transplantation can be proven.

Due to the promising results, the same will be performed on human embryonic stem cells. Prof. Hescheler’s group is one of three in Germany, found to be ethically sound and allowed by the government to import human embryonic stem cells for scientific purposes.

Professor Dr. med. Jürgen Hescheler
Institute of Physiology at the University of Cologne, Cologne
Germany

Important: This press release accompanies both a presentation and an ESC press conference given at the ESC Congress 2003. Written by the investigator himself/herself, this press release does not necessarily reflect the opinion of the European Society of Cardiology

Camilla Dormer | alfa
Further information:
http://www.escardio.org

More articles from Health and Medicine:

nachricht World first: Massive thrombosis removed during early pregnancy
20.07.2017 | Universitätsspital Bern

nachricht Therapy of preterm birth in sight?
19.07.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

Leipzig HTP-Forum discusses "hydrothermal processes" as a key technology for a biobased economy

12.07.2017 | Event News

 
Latest News

Researchers create new technique for manipulating polarization of terahertz radiation

20.07.2017 | Information Technology

High-tech sensing illuminates concrete stress testing

20.07.2017 | Materials Sciences

First direct observation and measurement of ultra-fast moving vortices in superconductors

20.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>