Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stem cell therapy for myocardial repair & regeneration

02.09.2003


ESC Congress 2003



Heart attack and the resulting heart failure is still one of the leading causes of death in the western world. Therefore, new theraepeutical approaches to restore damaged heart tissue are indispensable. Prof. Hescheler’s research group has been working with murine embryonic stem cells for over 14 years now and was the first group worldwide to obviously measure physiological functions on embryonic stem cells.

Recently his group demonstrated that cardiac precursor cells, especially differentiated out of pluripotent embryonic stem cells and injected in infarcted heart tissue, are able to build up new functioning heart muscle tissue.


Embryonic stem cells can differentiate into nearly 200 different tissues. The main focus in his institute in Cologne is placed on the special development of so called cardiac precursor cells, “fore-runners” of differentiated, adult heart muscle cells. But how can we manage to lead many early embryonic stem cells on a physiological way to become fresh functioning heart cells?

For this reason many molecular biological steps are necessary, including some genetic “tricks”. At first a special protein-promotor is combined, which only works in cardiac precursor cells, with a green fluoescent protein, which stems from an atlantic jellyfish. If a cardiac precursor cell develops, this cell can be identifed by its green colour in the fluorescent microscope.

Furthermore to this “genetic double-construct” a gene is bound, which makes the cardiac precursor cells resistant against special antibiotics. If the antibiotics are then given into the cell suspension, only cardiac precursor cells survive.

In a mouse model a heart-attack-like damage by cryoinfarction is induced and the prepared cells injected into the infarcted area. After two weeks the heart is examined and wonderful green fluorescent tissue can be found, where before only dead material had been.

The physiological engraftment of the cells can be by different investigations such as echocardiography, heart-catheterization and many cellular processes. Even better: a significant benefit in the survival rate of infarcted and then cell-transplanted mice compared to animals without the transplantation can be proven.

Due to the promising results, the same will be performed on human embryonic stem cells. Prof. Hescheler’s group is one of three in Germany, found to be ethically sound and allowed by the government to import human embryonic stem cells for scientific purposes.

Professor Dr. med. Jürgen Hescheler
Institute of Physiology at the University of Cologne, Cologne
Germany

Important: This press release accompanies both a presentation and an ESC press conference given at the ESC Congress 2003. Written by the investigator himself/herself, this press release does not necessarily reflect the opinion of the European Society of Cardiology

Camilla Dormer | alfa
Further information:
http://www.escardio.org

More articles from Health and Medicine:

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

nachricht Stem cell transplants: activating signal paths may protect from graft-versus-host disease
20.04.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>