Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stem cell therapy for myocardial repair & regeneration

02.09.2003


ESC Congress 2003



Heart attack and the resulting heart failure is still one of the leading causes of death in the western world. Therefore, new theraepeutical approaches to restore damaged heart tissue are indispensable. Prof. Hescheler’s research group has been working with murine embryonic stem cells for over 14 years now and was the first group worldwide to obviously measure physiological functions on embryonic stem cells.

Recently his group demonstrated that cardiac precursor cells, especially differentiated out of pluripotent embryonic stem cells and injected in infarcted heart tissue, are able to build up new functioning heart muscle tissue.


Embryonic stem cells can differentiate into nearly 200 different tissues. The main focus in his institute in Cologne is placed on the special development of so called cardiac precursor cells, “fore-runners” of differentiated, adult heart muscle cells. But how can we manage to lead many early embryonic stem cells on a physiological way to become fresh functioning heart cells?

For this reason many molecular biological steps are necessary, including some genetic “tricks”. At first a special protein-promotor is combined, which only works in cardiac precursor cells, with a green fluoescent protein, which stems from an atlantic jellyfish. If a cardiac precursor cell develops, this cell can be identifed by its green colour in the fluorescent microscope.

Furthermore to this “genetic double-construct” a gene is bound, which makes the cardiac precursor cells resistant against special antibiotics. If the antibiotics are then given into the cell suspension, only cardiac precursor cells survive.

In a mouse model a heart-attack-like damage by cryoinfarction is induced and the prepared cells injected into the infarcted area. After two weeks the heart is examined and wonderful green fluorescent tissue can be found, where before only dead material had been.

The physiological engraftment of the cells can be by different investigations such as echocardiography, heart-catheterization and many cellular processes. Even better: a significant benefit in the survival rate of infarcted and then cell-transplanted mice compared to animals without the transplantation can be proven.

Due to the promising results, the same will be performed on human embryonic stem cells. Prof. Hescheler’s group is one of three in Germany, found to be ethically sound and allowed by the government to import human embryonic stem cells for scientific purposes.

Professor Dr. med. Jürgen Hescheler
Institute of Physiology at the University of Cologne, Cologne
Germany

Important: This press release accompanies both a presentation and an ESC press conference given at the ESC Congress 2003. Written by the investigator himself/herself, this press release does not necessarily reflect the opinion of the European Society of Cardiology

Camilla Dormer | alfa
Further information:
http://www.escardio.org

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>