Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Northwestern’s Cancer Genetics Program pinpoints gene that increases cancer risk by 26 percent

28.08.2003


A gene present in nearly one in eight people is the most commonly inherited cancer susceptibility gene identified so far, increasing cancer risk in carriers by 26 percent, according to a study published by researchers at Chicago’s Northwestern Memorial Hospital in today’s Journal of Clinical Oncology. More common than the BRCA gene mutations, Transforming Growth Factor Beta Receptor 1*6A (TGFBR1*6A) may increase risk of breast cancer by 48 percent, ovarian cancer by 53 percent, and colon cancer by 38 percent.


"This is an exciting finding because TGFBR1*6A is a common gene that may cause a large number of cancers. In the near future, it will be commonplace for people to know what genes make them more susceptible to cancer, and we’ll have many more options for preventing those cancers," says Boris Pasche, M.D., Ph.D., F.A.C.P., director of Northwestern’s Cancer Genetics Program, assistant professor of medicine at the Feinberg School of Medicine and a researcher at the Robert H. Lurie Comprehensive Cancer Center of Northwestern University.

Researchers analyzed seven published studies and pooled those results to conclude that the TGFRB1*6A gene may be to blame for approximately 7 percent of all breast cancers, nearly 11 percent of all ovarian cancers and 5.5 percent of all colon cancers, across a variety of ethnic groups. "These findings should put TGFBR1*6A on the map with better known cancer susceptibility genes such as BRCA1 and BRCA2 that have been implicated in an estimated 5 to 10 percent of all breast and ovarian cancers," said Dr. Pasche.

Altered genes trigger all cancer. "Most cases of breast, ovarian and colon cancers are caused by damage to the genes that builds up over a lifetime, but some people are born with a high risk of the disease," explains Pasche. "When inherited, the TGFRB1*6A gene makes people susceptible to having certain cells grow and divide uncontrollably, which may contribute to cancer development."



Northwestern’s Cancer Genetics Program, which was launched last fall, is a comprehensive cancer genetics program that provides cancer predictive gene testing and genetic counseling. TGFBR1*6A testing is currently only offered at Northwestern as part of a research protocol at the Cancer Genetics Program, but Dr. Pasche predicts that testing for this gene will enter the mainstream of genetic testing in the near future. "The results of this study will certainly spark interest in genetic testing and counseling for TGFBR1*6A," he says.

"By spotting a mutated gene in an individual, we can sometimes detect cancer years earlier through increased cancer screening. Through genetic counseling and genetic testing, we aim to reduce the incidence of cancer among individuals with increased risk," explains Taya Young, MS, a genetic counselor at the Northwestern Cancer Genetics Program. Currently, there are several options for people who find themselves at increased risk of breast, ovarian and colon cancers. These include preventive drug therapy, increased surveillance, lifestyle changes and preventive surgery. "Genetics is still a very new specialty, and we are just at the tip of the iceberg in discovering how we can maximize its full potential," says Dr. Pasche.

Virginia Kaklamani M.D., an oncologist at Northwestern Memorial Hospital and assistant professor of medicine at the Feinberg School of Medicine, is the first author of the study. She adds, "The testing of TGFBR1*6A is not ready for primetime yet. We still have to understand its role in relation with other genes that we commonly test for, such as BRCA1 and BRCA2.

However, in the foreseeable future, we may be able to identify high-risk women more precisely because of the TGFBR1*6A mutation and prevent many cases of breast and ovarian cancer."


###
About Northwestern Memorial’s Cancer Program

With the important affiliation of Northwestern Memorial Hospital (NMH), Northwestern Memorial Faculty Foundation (NMFF) and The Robert H. Lurie Comprehensive Cancer Center of Northwestern University, NMH has established a national reputation as a leader in providing state-of-the-art, patient-focused and family-centered care. The NMH cancer program is ranked among the top 40 in the country for this specialty by U.S. News and World Report’s Best Hospitals issue.

More than 110 physicians provide comprehensive diagnostic and treatment services for all types of cancers and benign hematological disorders. NMH recently dedicated a division of surgical oncology and offers a multi-disciplinary clinical cancer center.

About Northwestern Memorial Hospital

Northwestern Memorial Hospital (NMH) is one of the country’s premier academic medical centers and is the primary teaching hospital of Northwestern University’s Feinberg School of Medicine. Northwestern Memorial and its Prentice Women’s Hospital have 720 beds and more than 1,200 affiliated physicians and 5,000 employees. Providing care in a state-of-the-art facility, the hospital is recognized for its outstanding clinical and surgical advancements in such areas as cardiothoracic and vascular care, gastroenterology, neurology and neurosurgery, oncology, organ and bone marrow transplantation, and women’s health.

Northwestern Memorial was ranked as the nation’s 5th best hospital by the 2002 Consumer Checkbook survey of the nation’s physicians and is listed in the majority of specialties in this year’s US News & World Report’s issue of "America’s Best Hospitals." NMH is also cited as one of the "100 Best Companies for Working Mothers" by Working Mother magazine and has been chosen by Chicagoans year after year as their "most preferred hospital" in National Research Corporation’s annual survey.

Amanda Widtfeldt | EurekAlert!
Further information:
http://www.nmh.org/

More articles from Health and Medicine:

nachricht How cancer metastasis happens: Researchers reveal a key mechanism
19.01.2018 | Weill Cornell Medicine

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>