Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Northwestern’s Cancer Genetics Program pinpoints gene that increases cancer risk by 26 percent

28.08.2003


A gene present in nearly one in eight people is the most commonly inherited cancer susceptibility gene identified so far, increasing cancer risk in carriers by 26 percent, according to a study published by researchers at Chicago’s Northwestern Memorial Hospital in today’s Journal of Clinical Oncology. More common than the BRCA gene mutations, Transforming Growth Factor Beta Receptor 1*6A (TGFBR1*6A) may increase risk of breast cancer by 48 percent, ovarian cancer by 53 percent, and colon cancer by 38 percent.


"This is an exciting finding because TGFBR1*6A is a common gene that may cause a large number of cancers. In the near future, it will be commonplace for people to know what genes make them more susceptible to cancer, and we’ll have many more options for preventing those cancers," says Boris Pasche, M.D., Ph.D., F.A.C.P., director of Northwestern’s Cancer Genetics Program, assistant professor of medicine at the Feinberg School of Medicine and a researcher at the Robert H. Lurie Comprehensive Cancer Center of Northwestern University.

Researchers analyzed seven published studies and pooled those results to conclude that the TGFRB1*6A gene may be to blame for approximately 7 percent of all breast cancers, nearly 11 percent of all ovarian cancers and 5.5 percent of all colon cancers, across a variety of ethnic groups. "These findings should put TGFBR1*6A on the map with better known cancer susceptibility genes such as BRCA1 and BRCA2 that have been implicated in an estimated 5 to 10 percent of all breast and ovarian cancers," said Dr. Pasche.

Altered genes trigger all cancer. "Most cases of breast, ovarian and colon cancers are caused by damage to the genes that builds up over a lifetime, but some people are born with a high risk of the disease," explains Pasche. "When inherited, the TGFRB1*6A gene makes people susceptible to having certain cells grow and divide uncontrollably, which may contribute to cancer development."



Northwestern’s Cancer Genetics Program, which was launched last fall, is a comprehensive cancer genetics program that provides cancer predictive gene testing and genetic counseling. TGFBR1*6A testing is currently only offered at Northwestern as part of a research protocol at the Cancer Genetics Program, but Dr. Pasche predicts that testing for this gene will enter the mainstream of genetic testing in the near future. "The results of this study will certainly spark interest in genetic testing and counseling for TGFBR1*6A," he says.

"By spotting a mutated gene in an individual, we can sometimes detect cancer years earlier through increased cancer screening. Through genetic counseling and genetic testing, we aim to reduce the incidence of cancer among individuals with increased risk," explains Taya Young, MS, a genetic counselor at the Northwestern Cancer Genetics Program. Currently, there are several options for people who find themselves at increased risk of breast, ovarian and colon cancers. These include preventive drug therapy, increased surveillance, lifestyle changes and preventive surgery. "Genetics is still a very new specialty, and we are just at the tip of the iceberg in discovering how we can maximize its full potential," says Dr. Pasche.

Virginia Kaklamani M.D., an oncologist at Northwestern Memorial Hospital and assistant professor of medicine at the Feinberg School of Medicine, is the first author of the study. She adds, "The testing of TGFBR1*6A is not ready for primetime yet. We still have to understand its role in relation with other genes that we commonly test for, such as BRCA1 and BRCA2.

However, in the foreseeable future, we may be able to identify high-risk women more precisely because of the TGFBR1*6A mutation and prevent many cases of breast and ovarian cancer."


###
About Northwestern Memorial’s Cancer Program

With the important affiliation of Northwestern Memorial Hospital (NMH), Northwestern Memorial Faculty Foundation (NMFF) and The Robert H. Lurie Comprehensive Cancer Center of Northwestern University, NMH has established a national reputation as a leader in providing state-of-the-art, patient-focused and family-centered care. The NMH cancer program is ranked among the top 40 in the country for this specialty by U.S. News and World Report’s Best Hospitals issue.

More than 110 physicians provide comprehensive diagnostic and treatment services for all types of cancers and benign hematological disorders. NMH recently dedicated a division of surgical oncology and offers a multi-disciplinary clinical cancer center.

About Northwestern Memorial Hospital

Northwestern Memorial Hospital (NMH) is one of the country’s premier academic medical centers and is the primary teaching hospital of Northwestern University’s Feinberg School of Medicine. Northwestern Memorial and its Prentice Women’s Hospital have 720 beds and more than 1,200 affiliated physicians and 5,000 employees. Providing care in a state-of-the-art facility, the hospital is recognized for its outstanding clinical and surgical advancements in such areas as cardiothoracic and vascular care, gastroenterology, neurology and neurosurgery, oncology, organ and bone marrow transplantation, and women’s health.

Northwestern Memorial was ranked as the nation’s 5th best hospital by the 2002 Consumer Checkbook survey of the nation’s physicians and is listed in the majority of specialties in this year’s US News & World Report’s issue of "America’s Best Hospitals." NMH is also cited as one of the "100 Best Companies for Working Mothers" by Working Mother magazine and has been chosen by Chicagoans year after year as their "most preferred hospital" in National Research Corporation’s annual survey.

Amanda Widtfeldt | EurekAlert!
Further information:
http://www.nmh.org/

More articles from Health and Medicine:

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

nachricht Disrupted fat breakdown in the brain makes mice dumb
19.05.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>