Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Northwestern’s Cancer Genetics Program pinpoints gene that increases cancer risk by 26 percent


A gene present in nearly one in eight people is the most commonly inherited cancer susceptibility gene identified so far, increasing cancer risk in carriers by 26 percent, according to a study published by researchers at Chicago’s Northwestern Memorial Hospital in today’s Journal of Clinical Oncology. More common than the BRCA gene mutations, Transforming Growth Factor Beta Receptor 1*6A (TGFBR1*6A) may increase risk of breast cancer by 48 percent, ovarian cancer by 53 percent, and colon cancer by 38 percent.

"This is an exciting finding because TGFBR1*6A is a common gene that may cause a large number of cancers. In the near future, it will be commonplace for people to know what genes make them more susceptible to cancer, and we’ll have many more options for preventing those cancers," says Boris Pasche, M.D., Ph.D., F.A.C.P., director of Northwestern’s Cancer Genetics Program, assistant professor of medicine at the Feinberg School of Medicine and a researcher at the Robert H. Lurie Comprehensive Cancer Center of Northwestern University.

Researchers analyzed seven published studies and pooled those results to conclude that the TGFRB1*6A gene may be to blame for approximately 7 percent of all breast cancers, nearly 11 percent of all ovarian cancers and 5.5 percent of all colon cancers, across a variety of ethnic groups. "These findings should put TGFBR1*6A on the map with better known cancer susceptibility genes such as BRCA1 and BRCA2 that have been implicated in an estimated 5 to 10 percent of all breast and ovarian cancers," said Dr. Pasche.

Altered genes trigger all cancer. "Most cases of breast, ovarian and colon cancers are caused by damage to the genes that builds up over a lifetime, but some people are born with a high risk of the disease," explains Pasche. "When inherited, the TGFRB1*6A gene makes people susceptible to having certain cells grow and divide uncontrollably, which may contribute to cancer development."

Northwestern’s Cancer Genetics Program, which was launched last fall, is a comprehensive cancer genetics program that provides cancer predictive gene testing and genetic counseling. TGFBR1*6A testing is currently only offered at Northwestern as part of a research protocol at the Cancer Genetics Program, but Dr. Pasche predicts that testing for this gene will enter the mainstream of genetic testing in the near future. "The results of this study will certainly spark interest in genetic testing and counseling for TGFBR1*6A," he says.

"By spotting a mutated gene in an individual, we can sometimes detect cancer years earlier through increased cancer screening. Through genetic counseling and genetic testing, we aim to reduce the incidence of cancer among individuals with increased risk," explains Taya Young, MS, a genetic counselor at the Northwestern Cancer Genetics Program. Currently, there are several options for people who find themselves at increased risk of breast, ovarian and colon cancers. These include preventive drug therapy, increased surveillance, lifestyle changes and preventive surgery. "Genetics is still a very new specialty, and we are just at the tip of the iceberg in discovering how we can maximize its full potential," says Dr. Pasche.

Virginia Kaklamani M.D., an oncologist at Northwestern Memorial Hospital and assistant professor of medicine at the Feinberg School of Medicine, is the first author of the study. She adds, "The testing of TGFBR1*6A is not ready for primetime yet. We still have to understand its role in relation with other genes that we commonly test for, such as BRCA1 and BRCA2.

However, in the foreseeable future, we may be able to identify high-risk women more precisely because of the TGFBR1*6A mutation and prevent many cases of breast and ovarian cancer."

About Northwestern Memorial’s Cancer Program

With the important affiliation of Northwestern Memorial Hospital (NMH), Northwestern Memorial Faculty Foundation (NMFF) and The Robert H. Lurie Comprehensive Cancer Center of Northwestern University, NMH has established a national reputation as a leader in providing state-of-the-art, patient-focused and family-centered care. The NMH cancer program is ranked among the top 40 in the country for this specialty by U.S. News and World Report’s Best Hospitals issue.

More than 110 physicians provide comprehensive diagnostic and treatment services for all types of cancers and benign hematological disorders. NMH recently dedicated a division of surgical oncology and offers a multi-disciplinary clinical cancer center.

About Northwestern Memorial Hospital

Northwestern Memorial Hospital (NMH) is one of the country’s premier academic medical centers and is the primary teaching hospital of Northwestern University’s Feinberg School of Medicine. Northwestern Memorial and its Prentice Women’s Hospital have 720 beds and more than 1,200 affiliated physicians and 5,000 employees. Providing care in a state-of-the-art facility, the hospital is recognized for its outstanding clinical and surgical advancements in such areas as cardiothoracic and vascular care, gastroenterology, neurology and neurosurgery, oncology, organ and bone marrow transplantation, and women’s health.

Northwestern Memorial was ranked as the nation’s 5th best hospital by the 2002 Consumer Checkbook survey of the nation’s physicians and is listed in the majority of specialties in this year’s US News & World Report’s issue of "America’s Best Hospitals." NMH is also cited as one of the "100 Best Companies for Working Mothers" by Working Mother magazine and has been chosen by Chicagoans year after year as their "most preferred hospital" in National Research Corporation’s annual survey.

Amanda Widtfeldt | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>