Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Northwestern’s Cancer Genetics Program pinpoints gene that increases cancer risk by 26 percent

28.08.2003


A gene present in nearly one in eight people is the most commonly inherited cancer susceptibility gene identified so far, increasing cancer risk in carriers by 26 percent, according to a study published by researchers at Chicago’s Northwestern Memorial Hospital in today’s Journal of Clinical Oncology. More common than the BRCA gene mutations, Transforming Growth Factor Beta Receptor 1*6A (TGFBR1*6A) may increase risk of breast cancer by 48 percent, ovarian cancer by 53 percent, and colon cancer by 38 percent.


"This is an exciting finding because TGFBR1*6A is a common gene that may cause a large number of cancers. In the near future, it will be commonplace for people to know what genes make them more susceptible to cancer, and we’ll have many more options for preventing those cancers," says Boris Pasche, M.D., Ph.D., F.A.C.P., director of Northwestern’s Cancer Genetics Program, assistant professor of medicine at the Feinberg School of Medicine and a researcher at the Robert H. Lurie Comprehensive Cancer Center of Northwestern University.

Researchers analyzed seven published studies and pooled those results to conclude that the TGFRB1*6A gene may be to blame for approximately 7 percent of all breast cancers, nearly 11 percent of all ovarian cancers and 5.5 percent of all colon cancers, across a variety of ethnic groups. "These findings should put TGFBR1*6A on the map with better known cancer susceptibility genes such as BRCA1 and BRCA2 that have been implicated in an estimated 5 to 10 percent of all breast and ovarian cancers," said Dr. Pasche.

Altered genes trigger all cancer. "Most cases of breast, ovarian and colon cancers are caused by damage to the genes that builds up over a lifetime, but some people are born with a high risk of the disease," explains Pasche. "When inherited, the TGFRB1*6A gene makes people susceptible to having certain cells grow and divide uncontrollably, which may contribute to cancer development."



Northwestern’s Cancer Genetics Program, which was launched last fall, is a comprehensive cancer genetics program that provides cancer predictive gene testing and genetic counseling. TGFBR1*6A testing is currently only offered at Northwestern as part of a research protocol at the Cancer Genetics Program, but Dr. Pasche predicts that testing for this gene will enter the mainstream of genetic testing in the near future. "The results of this study will certainly spark interest in genetic testing and counseling for TGFBR1*6A," he says.

"By spotting a mutated gene in an individual, we can sometimes detect cancer years earlier through increased cancer screening. Through genetic counseling and genetic testing, we aim to reduce the incidence of cancer among individuals with increased risk," explains Taya Young, MS, a genetic counselor at the Northwestern Cancer Genetics Program. Currently, there are several options for people who find themselves at increased risk of breast, ovarian and colon cancers. These include preventive drug therapy, increased surveillance, lifestyle changes and preventive surgery. "Genetics is still a very new specialty, and we are just at the tip of the iceberg in discovering how we can maximize its full potential," says Dr. Pasche.

Virginia Kaklamani M.D., an oncologist at Northwestern Memorial Hospital and assistant professor of medicine at the Feinberg School of Medicine, is the first author of the study. She adds, "The testing of TGFBR1*6A is not ready for primetime yet. We still have to understand its role in relation with other genes that we commonly test for, such as BRCA1 and BRCA2.

However, in the foreseeable future, we may be able to identify high-risk women more precisely because of the TGFBR1*6A mutation and prevent many cases of breast and ovarian cancer."


###
About Northwestern Memorial’s Cancer Program

With the important affiliation of Northwestern Memorial Hospital (NMH), Northwestern Memorial Faculty Foundation (NMFF) and The Robert H. Lurie Comprehensive Cancer Center of Northwestern University, NMH has established a national reputation as a leader in providing state-of-the-art, patient-focused and family-centered care. The NMH cancer program is ranked among the top 40 in the country for this specialty by U.S. News and World Report’s Best Hospitals issue.

More than 110 physicians provide comprehensive diagnostic and treatment services for all types of cancers and benign hematological disorders. NMH recently dedicated a division of surgical oncology and offers a multi-disciplinary clinical cancer center.

About Northwestern Memorial Hospital

Northwestern Memorial Hospital (NMH) is one of the country’s premier academic medical centers and is the primary teaching hospital of Northwestern University’s Feinberg School of Medicine. Northwestern Memorial and its Prentice Women’s Hospital have 720 beds and more than 1,200 affiliated physicians and 5,000 employees. Providing care in a state-of-the-art facility, the hospital is recognized for its outstanding clinical and surgical advancements in such areas as cardiothoracic and vascular care, gastroenterology, neurology and neurosurgery, oncology, organ and bone marrow transplantation, and women’s health.

Northwestern Memorial was ranked as the nation’s 5th best hospital by the 2002 Consumer Checkbook survey of the nation’s physicians and is listed in the majority of specialties in this year’s US News & World Report’s issue of "America’s Best Hospitals." NMH is also cited as one of the "100 Best Companies for Working Mothers" by Working Mother magazine and has been chosen by Chicagoans year after year as their "most preferred hospital" in National Research Corporation’s annual survey.

Amanda Widtfeldt | EurekAlert!
Further information:
http://www.nmh.org/

More articles from Health and Medicine:

nachricht Custom-tailored strategy against glioblastomas
26.09.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New leukemia treatment offers hope
23.09.2016 | King Abdullah University of Science and Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

 
Latest News

New Multiferroic Materials from Building Blocks

29.09.2016 | Materials Sciences

Silicon Fluorescent Material Developed Enabling Observations under a Bright “Biological Optical Window”

29.09.2016 | Materials Sciences

X-shape Bio-inspired Structures

29.09.2016 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>