Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NIEHS study identifies gene for hydrocephalus in mice

22.08.2003


Scientists at the National Institute of Environmental Health Sciences have identified a gene called RFX4 that is responsible for the birth defect hydrocephalus in mice. Loss of a single copy of this gene in mice leads to a failure of drainage of cerebrospinal fluid from the brain cavity, which causes the skull to swell.



About one child in 2,000 worldwide is afflicted by hydrocephalus. Identification of the mouse gene provides a means for researchers to study the possible genetic origins of this common birth defect in humans.

The gene was discovered when researchers noticed that pups in one line of transgenic mice from a completely different study developed head swelling and neurological abnormalities shortly after birth. The NIEHS research team then cloned the defective gene and found that it was responsible for development of a critical structure in the brain that controls cerebrospinal fluid drainage. All of the mice with the defective gene developed the classic symptoms of hydrocephalus, whereas none of the littermates with the normal gene developed this condition. Although the head-swelling led to rapid neurological deterioration and death in many of the transgenic animals, a number have survived to reproduce and propagate the line.


"Animal models of human diseases are often an invaluable tool for studying the underlying causes of a disease, in this case a severe and common birth defect," Darryl C. Zeldin, M.D., one of the authors of the study said. "Identifying the genetic sources of this birth defect in mice may lead to the development of better treatment or prevention of hydrocephalus in humans."

Dr. Zeldin points out that this study is based on the discovery of the mouse gene and its relationship to development of hydrocephalus in mice. The study also describes the cloning of the human homolog of this gene, but the authors cannot say this gene is associated with hydrocephalus in humans yet.

Dr. Zeldin said, "The RFX gene may or may not be associated with hydrocephalus in humans, but that is where we are going in the future with this project. There are likely many causes for hydrocephalus in humans, both genetic and environmental."

"RFX4 belongs to a family of proteins called transcription factors that control expression of other genes," said Perry J. Blackshear, M.D., D.Phil., a co-author of the study. "Identifying exactly which genes are controlled by RFX4 will be an important next step."

The NIEHS researchers have already begun to look for common defects in the RFX4 gene in humans with hydrocephalus. The ultimate goal of these studies will be to develop screening assays to identify this defect so that patients can be counseled appropriately.

The study appears online at http://dev.biologists.org/ on the web site of the scientific journal Development, and will appear in an upcoming print issue. The study is authored by Perry J. Blackshear, M.D., D.Phil. (NIEHS), Joan P. Graves (NIEHS), Deborah J. Stumpo, Ph.D. (NIEHS), Inma Cobos, Ph.D. (University of California at San Francisco), John L.R. Rubenstein, M.D., Ph.D. (University of California at San Francisco) and Darryl C. Zeldin, M.D. (NIEHS).


###
For further information on the study, contact either Dr. Zeldin at 919-541-1169 or Dr. Blackshear at 919-541-4899.


Tom Hawkins | EurekAlert!
Further information:
http://www.niehs.nih.gov/

More articles from Health and Medicine:

nachricht Routing gene therapy directly into the brain
07.12.2017 | Boston Children's Hospital

nachricht New Hope for Cancer Therapies: Targeted Monitoring may help Improve Tumor Treatment
01.12.2017 | Berliner Institut für Gesundheitsforschung / Berlin Institute of Health (BIH)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>