Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Small subset of cells has big role in controlling immunity, study finds

18.08.2003


A small subset of cells that tells the immune system whether to attack may be a future target for therapies to help patients fight tumors and keep transplanted organs, a Medical College of Georgia researcher says.


Dr. Andrew L. Mellor, director of MCG’s Immunotherapy Center.



Dendritic cells roam the body, picking up invaders, such as a virus or cancer, then show their finds to the T-cells and tell them how to respond, says Dr. Andrew L. Mellor, molecular geneticist and immunologist and director of the MCG Immunotherapy Center.

Work published in the Aug. 15 issue of The Journal of Immunology by Dr. Mellor and his colleagues gives further clues over what direction dendritic cells will give.


They have shown that giving mice an experimental immunosuppressive agent causes a select number of these cells to express an enzyme, indoleamine 2,3 dioxygenase, or IDO, and that those cells tell T-cells not to respond.

"They are a very fascinating new subset of dendritic cells previously not recognized," says Dr. Mellor, Georgia Research Alliance Eminent Scholar in Molecular Immunogenetics. "We do not think all dendritic cells have the capacity to express IDO. The magic of this subset is their ability to do that," he said of the enzyme first identified for its role in helping a fetus escape rejection by the mother’s immune system.

"One of the things we argue in this paper is that we can use IDO to help us find out if dendritic cells are going to stimulate the immune system or turn it off. If they express IDO, they will not stimulate T cells to respond. If they don’t express IDO, they are likely to stimulate immune responses once they mature," Dr. Mellor says.

Five years ago nearly to the day, Dr. Mellor and his colleagues, Drs. David Munn and Simon Conway, were reporting in the journal Science that the developing fetus uses IDO to locally disable the mother’s immune system. It works by degrading tryptophan, an amino acid critical to the survival of T-cells, which get their action cues from dendritic cells.

The MCG scientists have focused many of their efforts since on how to use the IDO mechanism to manipulate the immune system to the patient’s advantage. In the case of transplant patients, they want the immune system to ignore the new organ; in the case of autoimmune diseases such as type 1 diabetes, they want it to stop a self-destructive attack on pancreas cells that produce insulin. Conversely, they want to prompt the immune system to destroy persistent tumors. In fact, their subsequent studies have shown some tumors express IDO, apparently much as the fetus, which may help them escape the immune response. Persistent infections such as HIV, the virus that causes AIDS, may also rely on the IDO mechanism to avoid destruction by the patients’ immune system.

A second Science paper by Drs. Munn and Mellor in September 2002 reported that human dendritic cells could express IDO and showed how the expression suppressed the proliferation of T-cells. "The idea of it simply being expressed in the dendritic cells completely alters our understanding of how dendritic cells talk to T-cells," Dr. Mellor says. "What is it that makes a dendritic cell decide to express IDO or not, that is the key question."

Now in animal studies they have made a select number of dendritic cells do just that by giving the drug CTLA4-Ig, a reagent designed to block the action of T-cells. The reagent is still in clinical trials to evaluate its potential for patients with transplants and autoimmune diseases such as multiple sclerosis. In November, scientists from the University of Perugia in Italy were the first to report that treatment with CTLA4-Ig induced the IDO mechanism in dendritic cells, a move that ultimately keeps T-cells from responding.

Although dendritic cells were believed to be a fairly homogenous group, the MCG scientists have shown that only a small number of the cells respond to the reagent. They also used the IDO knockout mice developed at MCG to prove that IDO has to be present for the reagent to have maximal effect, Dr. Mellor says.

These findings take the researchers closer to their goal of targeted manipulation of the immune system. "In principal we can use the new immunosuppressive drug to do that. We can treat mice with the reagent, and introduce antigens that their immune systems would normally respond vigorously to. The prediction is that the mouse treated with this reagent will no longer respond vigorously to these antigens. Our preliminary data indicates that we are on the right track."

In fact, the Perugia scientists have shown that the mouse model for type 1 diabetes has a specific defect in the IDO mechanism. "That means that if you have a defect in that mechanism, those mice and, therefore by extrapolation, human beings too, are much more likely to get type 1 diabetes." That knowledge needs to be used to help eliminate or at least reduce the risk of children identified at risk, Dr. Mellor said, referencing a large newborn screening program for type 1 diabetes under way by Dr. Jin-Xiong She, director of the MCG Center for Biotechnology and Genomic Medicine and Georgia Research Alliance Scholar in Genomic Medicine. "We have to use our immunology knowledge to protect patients at risk from getting diabetes," Dr. Mellor said.

When the immune system is not responsive enough, such as in the case of a tumor, they can block the IDO mechanism in the cells so they would regain the ability to attack. His colleague, Dr. Munn, is moving toward clinical trials on blocking this mechanism pharmacologically, much as they did in the early days to show the role of IDO in helping a fetus avoid rejection.

"It comes back to the unifying theme of what it is at the molecular and cellular level that regulates whether the immune system is going to respond or not to any given circumstance," Dr. Mellor says. "That is what we are working on and the results reported in this paper represent a significant breakthrough in understanding how to control immune responses."


###
The MCG researchers have funding from the National Institutes of Health and Carlos and Marguerite Mason Trust.

Toni Baker | EurekAlert!
Further information:
http://www.mcg.edu/

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>