Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carnegie Mellon develops new process for growing bone

14.08.2003


Researchers use new synthetic hydro-gel



Carnegie Mellon University’s Jeffrey Hollinger and his research team will receive $1.12 million over the next four years from the National Institutes of Health (NIH) to develop a new therapy for regenerating bone.

Bone, often called the structural steel and reinforced concrete of the human body, supports the body the way a steel framework supports a skyscraper, and it protects its vital organs the way a cast-concrete roof protects’ its building occupants. "Unfortunately, bone loss is an unavoidable consequence of aging, osteoporosis and many traumatic accidents,’’ Hollinger said.


To address the challenges of safe and effective therapy to restore form and function to deficient bone architecture, Hollinger’s research team at Carnegie Mellon’s Bone Tissue Engineering Center has developed an innovative therapy for growing bone by inserting a non-viral gene into the body to induce cells to grow bone.

"We are injecting the NTF gene into a site where bone is deficient via a synthetic hydro-gel made from a hyaluronic acid-based polymer,’’ Hollinger said. "The hydro-gel/NTF is non-immunogenic and is designed to restore form and function to bone deficiencies.’’

Some of the first pre-clinical trials will involve growing bone in the jaw, said Hollinger. And according to transportation officials, about 10 percent of vehicle accident injuries involve the jaw and the flat bones in the face. "Restoring periodontal bone loss is a high priority for our team, and Bruce Doll, head of the Department of Periodontology at the University of Pittsburgh is leading this challenge,’’ Hollinger said.

Through ever-improving surgical techniques, the replacement of bone has been done via bone grafting either from the patient’s own body or from animal (usually cow) bone. But because the human body is inclined to reject most ’non-self’ grafts, Hollinger’s synthetic approach to growing bone will eliminate immune rejections. His research team includes Doll at the University of Pittsburgh’s Dental School and Carnegie Mellon Bone Tissue Engineering Center scientists Yunhua Hu and Huihua Fu, the two scientists who perfected the NTF-hydrogel therapy, and whose work was the foundation for the NIH grant. .

In addition to growing bone for injuries to the jaw, Hollinger’s research team plans to use the new bone regeneration process to treat osteoporotic fractures, and in other applications in other pasrts of the body including the spine, pelvis and all powerful thigh bone – about 20 inches long and more than an inch across at the midshaft. A mature body contains more than 600 muscles and 206 bones, not counting the tiny seasmoid bones – like sesame seeds – embedded in the tendons of the thumb, big toe and other pressure points.

"After blood, bone is the most frequently transplanted tissue. Current therapies for bone grafting fall short of the mark. The Bone Tissue Engineering Center is developing exciting new bone theraputics that will offer surgeons and their patients much better options. And the NTF/injectable hydrogel is one such example therapy from the Carnegie Mellon-Pitt team,’’ Hollinger said.

Chriss Swaney | EurekAlert!
Further information:
http://www.cmu.edu/

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

NASA Protects its super heroes from space weather

17.08.2017 | Physics and Astronomy

Spray-on electric rainbows: Making safer electrochromic inks

17.08.2017 | Materials Sciences

Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

17.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>