Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carnegie Mellon develops new process for growing bone

14.08.2003


Researchers use new synthetic hydro-gel



Carnegie Mellon University’s Jeffrey Hollinger and his research team will receive $1.12 million over the next four years from the National Institutes of Health (NIH) to develop a new therapy for regenerating bone.

Bone, often called the structural steel and reinforced concrete of the human body, supports the body the way a steel framework supports a skyscraper, and it protects its vital organs the way a cast-concrete roof protects’ its building occupants. "Unfortunately, bone loss is an unavoidable consequence of aging, osteoporosis and many traumatic accidents,’’ Hollinger said.


To address the challenges of safe and effective therapy to restore form and function to deficient bone architecture, Hollinger’s research team at Carnegie Mellon’s Bone Tissue Engineering Center has developed an innovative therapy for growing bone by inserting a non-viral gene into the body to induce cells to grow bone.

"We are injecting the NTF gene into a site where bone is deficient via a synthetic hydro-gel made from a hyaluronic acid-based polymer,’’ Hollinger said. "The hydro-gel/NTF is non-immunogenic and is designed to restore form and function to bone deficiencies.’’

Some of the first pre-clinical trials will involve growing bone in the jaw, said Hollinger. And according to transportation officials, about 10 percent of vehicle accident injuries involve the jaw and the flat bones in the face. "Restoring periodontal bone loss is a high priority for our team, and Bruce Doll, head of the Department of Periodontology at the University of Pittsburgh is leading this challenge,’’ Hollinger said.

Through ever-improving surgical techniques, the replacement of bone has been done via bone grafting either from the patient’s own body or from animal (usually cow) bone. But because the human body is inclined to reject most ’non-self’ grafts, Hollinger’s synthetic approach to growing bone will eliminate immune rejections. His research team includes Doll at the University of Pittsburgh’s Dental School and Carnegie Mellon Bone Tissue Engineering Center scientists Yunhua Hu and Huihua Fu, the two scientists who perfected the NTF-hydrogel therapy, and whose work was the foundation for the NIH grant. .

In addition to growing bone for injuries to the jaw, Hollinger’s research team plans to use the new bone regeneration process to treat osteoporotic fractures, and in other applications in other pasrts of the body including the spine, pelvis and all powerful thigh bone – about 20 inches long and more than an inch across at the midshaft. A mature body contains more than 600 muscles and 206 bones, not counting the tiny seasmoid bones – like sesame seeds – embedded in the tendons of the thumb, big toe and other pressure points.

"After blood, bone is the most frequently transplanted tissue. Current therapies for bone grafting fall short of the mark. The Bone Tissue Engineering Center is developing exciting new bone theraputics that will offer surgeons and their patients much better options. And the NTF/injectable hydrogel is one such example therapy from the Carnegie Mellon-Pitt team,’’ Hollinger said.

Chriss Swaney | EurekAlert!
Further information:
http://www.cmu.edu/

More articles from Health and Medicine:

nachricht Custom-tailored strategy against glioblastomas
26.09.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New leukemia treatment offers hope
23.09.2016 | King Abdullah University of Science and Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

 
Latest News

New Multiferroic Materials from Building Blocks

29.09.2016 | Materials Sciences

Silicon Fluorescent Material Developed Enabling Observations under a Bright “Biological Optical Window”

29.09.2016 | Materials Sciences

X-shape Bio-inspired Structures

29.09.2016 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>