Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Green tea´s cancer-fighting allure becomes more potent

05.08.2003


Green tea´s ability to fight cancer is even more potent and varied than scientists suspected, say researchers who have discovered that chemicals in green tea shut down one of the key molecules that tobacco relies upon to cause cancer. It´s a find that could help explain why people who drink green tea are less likely to develop cancer.

The finding by scientists at the University of Rochester´s Environmental Health Science Center appears in the July 21 issue of Chemical Research in Toxicology, published by the American Chemical Society.

Graduate student Christine Palermo and adviser Thomas Gasiewicz, Ph.D., set out to measure the effects of the chemicals found in green tea on a molecule known as the aryl hydrocarbon (AH) receptor, a molecule that frequently plays a role in turning on genes that are oftentimes harmful. Gasiewicz has previously shown how both tobacco smoke and dioxin manipulate the molecule – a favorite target of toxic substances – to cause havoc within the body.



The team isolated the chemicals that make up green tea and found two that inhibit AH activity. The two substances, epigallocatechingallate (EGCG) and epigallocatechin (EGC), are close molecular cousins to other flavonoids found in broccoli, cabbage, grapes and red wine that are known to help prevent cancer.

While green tea has been much-ballyhooed for its anti-cancer effects as well as other purported abilities such as preventing rheumatoid arthritis and lowering cholesterol, just how the substance works has been a mystery. Scientists do know that green tea contains chemicals that are anti-oxidants and quench harmful molecules. But its effects on the AH receptor have not been thoroughly evaluated until now.

"It´s likely that the compounds in green tea act through many different pathways," says Gasiewicz, professor and chair of Environmental Medicine and director of Rochester´s Environmental Health Science Center. "Green tea may work differently than we thought to exert its anti-cancer activity."

Gasiewicz and Palermo showed that the chemicals shut down the AH receptor in cancerous mouse cells, and early results indicate the same is true in human cells as well.

In the laboratory the AH-inhibiting effects of green tea become evident when EGCG and EGC reach levels typical of those found in a cup of green tea. But the scientists say that how green tea is metabolized by the body is crucial to its effectiveness, and that results in the laboratory don´t necessarily translate directly to the dinner table.

"Right now we don´t know if drinking the amount of green tea that a person normally drinks would make a difference, but the work is giving us insight into how the proteins work," says Palermo, who enjoys cold green tea herself. "There are a lot of differences between various kinds of green tea, so a lot more research is needed."

For this work Palermo received the award for best poster in the chemical carcinogenesis specialty section at the meeting of the Society of Toxicology in March. Now she is studying exactly how green tea inhibits the AH receptor. After she graduates Palermo plans to study links between environmental agents and childhood leukemia.

Tom Rickey | EurekAlert!
Further information:
http://www.urmc.rochester.edu

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>