Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Green tea´s cancer-fighting allure becomes more potent


Green tea´s ability to fight cancer is even more potent and varied than scientists suspected, say researchers who have discovered that chemicals in green tea shut down one of the key molecules that tobacco relies upon to cause cancer. It´s a find that could help explain why people who drink green tea are less likely to develop cancer.

The finding by scientists at the University of Rochester´s Environmental Health Science Center appears in the July 21 issue of Chemical Research in Toxicology, published by the American Chemical Society.

Graduate student Christine Palermo and adviser Thomas Gasiewicz, Ph.D., set out to measure the effects of the chemicals found in green tea on a molecule known as the aryl hydrocarbon (AH) receptor, a molecule that frequently plays a role in turning on genes that are oftentimes harmful. Gasiewicz has previously shown how both tobacco smoke and dioxin manipulate the molecule – a favorite target of toxic substances – to cause havoc within the body.

The team isolated the chemicals that make up green tea and found two that inhibit AH activity. The two substances, epigallocatechingallate (EGCG) and epigallocatechin (EGC), are close molecular cousins to other flavonoids found in broccoli, cabbage, grapes and red wine that are known to help prevent cancer.

While green tea has been much-ballyhooed for its anti-cancer effects as well as other purported abilities such as preventing rheumatoid arthritis and lowering cholesterol, just how the substance works has been a mystery. Scientists do know that green tea contains chemicals that are anti-oxidants and quench harmful molecules. But its effects on the AH receptor have not been thoroughly evaluated until now.

"It´s likely that the compounds in green tea act through many different pathways," says Gasiewicz, professor and chair of Environmental Medicine and director of Rochester´s Environmental Health Science Center. "Green tea may work differently than we thought to exert its anti-cancer activity."

Gasiewicz and Palermo showed that the chemicals shut down the AH receptor in cancerous mouse cells, and early results indicate the same is true in human cells as well.

In the laboratory the AH-inhibiting effects of green tea become evident when EGCG and EGC reach levels typical of those found in a cup of green tea. But the scientists say that how green tea is metabolized by the body is crucial to its effectiveness, and that results in the laboratory don´t necessarily translate directly to the dinner table.

"Right now we don´t know if drinking the amount of green tea that a person normally drinks would make a difference, but the work is giving us insight into how the proteins work," says Palermo, who enjoys cold green tea herself. "There are a lot of differences between various kinds of green tea, so a lot more research is needed."

For this work Palermo received the award for best poster in the chemical carcinogenesis specialty section at the meeting of the Society of Toxicology in March. Now she is studying exactly how green tea inhibits the AH receptor. After she graduates Palermo plans to study links between environmental agents and childhood leukemia.

Tom Rickey | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>