Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Green tea´s cancer-fighting allure becomes more potent

05.08.2003


Green tea´s ability to fight cancer is even more potent and varied than scientists suspected, say researchers who have discovered that chemicals in green tea shut down one of the key molecules that tobacco relies upon to cause cancer. It´s a find that could help explain why people who drink green tea are less likely to develop cancer.

The finding by scientists at the University of Rochester´s Environmental Health Science Center appears in the July 21 issue of Chemical Research in Toxicology, published by the American Chemical Society.

Graduate student Christine Palermo and adviser Thomas Gasiewicz, Ph.D., set out to measure the effects of the chemicals found in green tea on a molecule known as the aryl hydrocarbon (AH) receptor, a molecule that frequently plays a role in turning on genes that are oftentimes harmful. Gasiewicz has previously shown how both tobacco smoke and dioxin manipulate the molecule – a favorite target of toxic substances – to cause havoc within the body.



The team isolated the chemicals that make up green tea and found two that inhibit AH activity. The two substances, epigallocatechingallate (EGCG) and epigallocatechin (EGC), are close molecular cousins to other flavonoids found in broccoli, cabbage, grapes and red wine that are known to help prevent cancer.

While green tea has been much-ballyhooed for its anti-cancer effects as well as other purported abilities such as preventing rheumatoid arthritis and lowering cholesterol, just how the substance works has been a mystery. Scientists do know that green tea contains chemicals that are anti-oxidants and quench harmful molecules. But its effects on the AH receptor have not been thoroughly evaluated until now.

"It´s likely that the compounds in green tea act through many different pathways," says Gasiewicz, professor and chair of Environmental Medicine and director of Rochester´s Environmental Health Science Center. "Green tea may work differently than we thought to exert its anti-cancer activity."

Gasiewicz and Palermo showed that the chemicals shut down the AH receptor in cancerous mouse cells, and early results indicate the same is true in human cells as well.

In the laboratory the AH-inhibiting effects of green tea become evident when EGCG and EGC reach levels typical of those found in a cup of green tea. But the scientists say that how green tea is metabolized by the body is crucial to its effectiveness, and that results in the laboratory don´t necessarily translate directly to the dinner table.

"Right now we don´t know if drinking the amount of green tea that a person normally drinks would make a difference, but the work is giving us insight into how the proteins work," says Palermo, who enjoys cold green tea herself. "There are a lot of differences between various kinds of green tea, so a lot more research is needed."

For this work Palermo received the award for best poster in the chemical carcinogenesis specialty section at the meeting of the Society of Toxicology in March. Now she is studying exactly how green tea inhibits the AH receptor. After she graduates Palermo plans to study links between environmental agents and childhood leukemia.

Tom Rickey | EurekAlert!
Further information:
http://www.urmc.rochester.edu

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>