Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find new way to trigger self-destruction of certain cancer cells

20.06.2003


Discovery could lead to new drug therapy for some childhood cancers



Investigators at St. Jude Children’s Research Hospital have discovered a previously unrecognized way that certain types of cancer cells can be forced to activate a self-destruction program called apoptosis.

The finding suggests that drugs designed to activate apoptosis might be effective anti-cancer therapies. This strategy would target specific molecules in the cancer cell rather than rely on chemotherapy, which has serious side effects that degrade quality of life. The research is published in the June 20 issue of Molecular Cell.


The St. Jude team stimulated apoptosis by treating cancer cells with a drug called rapamycin, which blocks the action of a protein called mTOR. This protein stimulates a biochemical pathway that leads to increased production of proteins essential for cell proliferation. Blocking mTOR with rapamycin leaves the cell unable to make these critical proteins.

Blocking the activity of mTOR with rapamycin triggers a biochemical pathway called the JNK cascade in cells that lack a gene called p53, according to Peter Houghton, Ph.D., chair of the St. Jude Department of Molecular Pharmacology. Since p53 is mutated and inactive in about half of all types of cancer, blocking mTOR and activating apoptosis in cells with mutated p53 has potentially wide application. Houghton is senior author of the paper reporting these results.

"Shutting down synthesis of proteins essential for cell proliferation by blocking mTOR sends the cell into a crisis," Houghton said. "The cell activates a protein called ASK1, which is at the top of the JNK cascade. ASK1 then sets off the JNK cascade and causes the cells that lack p53 to self-destruct."

In cells that have a functional p53 gene, (e.g., normal cells), a protein called p21 is expressed and--in the presence of rapamycin--binds to ASK1 and inactivates it. This prevents the cell from undergoing apoptosis.

The investigators also found that the stress caused by rapamycin requires the presence of a protein called 4E-BP1. This protein stops the cell from using use some types of mRNA (the "decoded" form of DNA) to make proteins, including survival factors. 4E-BP1 is normally held in check by mTOR; so the cell continues to use mRNA to make proteins that are essential for proliferation. However, when rapamycin blocks mTOR, 4E-BP1 is free to put the brakes on.

In cells lacking p53, activation of the JNK cascade by rapamycin occurs so quickly that it might not be caused directly by the inhibition of protein synthesis.

"Right now, we don’t know exactly what sends the cell into crisis after rapamycin blocks mTOR," Houghton said. "Further study is needed to determine what the link is between shutting down production of specific proteins and the cellular crisis that prompts cells to undergo apoptosis."

The strategy of using rapamycin to block mTOR and activate ASK1 could be thwarted by another survival factor, called IGF-I.

"IGF-I prevents rapamycin from activating ASK1, and therefore shuts down the pathway that leads to apoptosis," Houghton said. "So any drug therapy that targets mTOR with the intent of inducing cell death should also include a drug that targets IGF-I signaling. That double hit would leave the cancer cell no choice but to self-destruct."

For this research, Houghton’s team used Rh30 cells--rhabdomyosarcoma cells lacking p53. The team showed that rapamycin caused sustained activation of the JNK cascade; and that exposure of Rh30 cells to IGF-I completed blocked the activation of c-Jun, a critical protein in the JNK cascade that is activated by rapamycin.

The team also showed that the Rh30 cells could be thrown into a crisis by starving them of amino acids, the building blocks of proteins. This stress required the presence of 4E-BP1 and activation of ASK1. Rh30 cells with rapamycin-resistant mTOR did not respond to the drug by triggering apoptosis. This was strong evidence that rapamycin had its effect on apoptosis by blocking mTOR.

St. Jude investigators are now planning clinical trials of two drugs that are rapamycin analogs (slight chemical modifications of rapamycin). The drugs, CCI779 (Wyeth-Ayerst) and RAD001 (Novartis), will be investigated for safety. Clinical trials will investigate their effectiveness in treating neuroblastoma, a cancer of specialized nerve cells involved in the development of the nervous system and other tissues.

Other authors of the paper include Shile Huang, Lili Shu, Michael B. Dilling, John Easton, Franklin C. Harwood (St. Jude) and Hidenori Ichijo (Tokyo Medical and Dental University; Tokyo, Japan).

Contact: Bonnie Cameron, bonnie.cameron@stjude.org

Bonnie Cameron | EurekAlert!
Further information:
http://www.stjude.org

More articles from Health and Medicine:

nachricht Cholesterol-lowering drugs may fight infectious disease
22.08.2017 | Duke University

nachricht Once invincible superbug squashed by 'superteam' of antibiotics
22.08.2017 | University at Buffalo

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>