Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find new way to trigger self-destruction of certain cancer cells

20.06.2003


Discovery could lead to new drug therapy for some childhood cancers



Investigators at St. Jude Children’s Research Hospital have discovered a previously unrecognized way that certain types of cancer cells can be forced to activate a self-destruction program called apoptosis.

The finding suggests that drugs designed to activate apoptosis might be effective anti-cancer therapies. This strategy would target specific molecules in the cancer cell rather than rely on chemotherapy, which has serious side effects that degrade quality of life. The research is published in the June 20 issue of Molecular Cell.


The St. Jude team stimulated apoptosis by treating cancer cells with a drug called rapamycin, which blocks the action of a protein called mTOR. This protein stimulates a biochemical pathway that leads to increased production of proteins essential for cell proliferation. Blocking mTOR with rapamycin leaves the cell unable to make these critical proteins.

Blocking the activity of mTOR with rapamycin triggers a biochemical pathway called the JNK cascade in cells that lack a gene called p53, according to Peter Houghton, Ph.D., chair of the St. Jude Department of Molecular Pharmacology. Since p53 is mutated and inactive in about half of all types of cancer, blocking mTOR and activating apoptosis in cells with mutated p53 has potentially wide application. Houghton is senior author of the paper reporting these results.

"Shutting down synthesis of proteins essential for cell proliferation by blocking mTOR sends the cell into a crisis," Houghton said. "The cell activates a protein called ASK1, which is at the top of the JNK cascade. ASK1 then sets off the JNK cascade and causes the cells that lack p53 to self-destruct."

In cells that have a functional p53 gene, (e.g., normal cells), a protein called p21 is expressed and--in the presence of rapamycin--binds to ASK1 and inactivates it. This prevents the cell from undergoing apoptosis.

The investigators also found that the stress caused by rapamycin requires the presence of a protein called 4E-BP1. This protein stops the cell from using use some types of mRNA (the "decoded" form of DNA) to make proteins, including survival factors. 4E-BP1 is normally held in check by mTOR; so the cell continues to use mRNA to make proteins that are essential for proliferation. However, when rapamycin blocks mTOR, 4E-BP1 is free to put the brakes on.

In cells lacking p53, activation of the JNK cascade by rapamycin occurs so quickly that it might not be caused directly by the inhibition of protein synthesis.

"Right now, we don’t know exactly what sends the cell into crisis after rapamycin blocks mTOR," Houghton said. "Further study is needed to determine what the link is between shutting down production of specific proteins and the cellular crisis that prompts cells to undergo apoptosis."

The strategy of using rapamycin to block mTOR and activate ASK1 could be thwarted by another survival factor, called IGF-I.

"IGF-I prevents rapamycin from activating ASK1, and therefore shuts down the pathway that leads to apoptosis," Houghton said. "So any drug therapy that targets mTOR with the intent of inducing cell death should also include a drug that targets IGF-I signaling. That double hit would leave the cancer cell no choice but to self-destruct."

For this research, Houghton’s team used Rh30 cells--rhabdomyosarcoma cells lacking p53. The team showed that rapamycin caused sustained activation of the JNK cascade; and that exposure of Rh30 cells to IGF-I completed blocked the activation of c-Jun, a critical protein in the JNK cascade that is activated by rapamycin.

The team also showed that the Rh30 cells could be thrown into a crisis by starving them of amino acids, the building blocks of proteins. This stress required the presence of 4E-BP1 and activation of ASK1. Rh30 cells with rapamycin-resistant mTOR did not respond to the drug by triggering apoptosis. This was strong evidence that rapamycin had its effect on apoptosis by blocking mTOR.

St. Jude investigators are now planning clinical trials of two drugs that are rapamycin analogs (slight chemical modifications of rapamycin). The drugs, CCI779 (Wyeth-Ayerst) and RAD001 (Novartis), will be investigated for safety. Clinical trials will investigate their effectiveness in treating neuroblastoma, a cancer of specialized nerve cells involved in the development of the nervous system and other tissues.

Other authors of the paper include Shile Huang, Lili Shu, Michael B. Dilling, John Easton, Franklin C. Harwood (St. Jude) and Hidenori Ichijo (Tokyo Medical and Dental University; Tokyo, Japan).

Contact: Bonnie Cameron, bonnie.cameron@stjude.org

Bonnie Cameron | EurekAlert!
Further information:
http://www.stjude.org

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>