Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find new way to trigger self-destruction of certain cancer cells

20.06.2003


Discovery could lead to new drug therapy for some childhood cancers



Investigators at St. Jude Children’s Research Hospital have discovered a previously unrecognized way that certain types of cancer cells can be forced to activate a self-destruction program called apoptosis.

The finding suggests that drugs designed to activate apoptosis might be effective anti-cancer therapies. This strategy would target specific molecules in the cancer cell rather than rely on chemotherapy, which has serious side effects that degrade quality of life. The research is published in the June 20 issue of Molecular Cell.


The St. Jude team stimulated apoptosis by treating cancer cells with a drug called rapamycin, which blocks the action of a protein called mTOR. This protein stimulates a biochemical pathway that leads to increased production of proteins essential for cell proliferation. Blocking mTOR with rapamycin leaves the cell unable to make these critical proteins.

Blocking the activity of mTOR with rapamycin triggers a biochemical pathway called the JNK cascade in cells that lack a gene called p53, according to Peter Houghton, Ph.D., chair of the St. Jude Department of Molecular Pharmacology. Since p53 is mutated and inactive in about half of all types of cancer, blocking mTOR and activating apoptosis in cells with mutated p53 has potentially wide application. Houghton is senior author of the paper reporting these results.

"Shutting down synthesis of proteins essential for cell proliferation by blocking mTOR sends the cell into a crisis," Houghton said. "The cell activates a protein called ASK1, which is at the top of the JNK cascade. ASK1 then sets off the JNK cascade and causes the cells that lack p53 to self-destruct."

In cells that have a functional p53 gene, (e.g., normal cells), a protein called p21 is expressed and--in the presence of rapamycin--binds to ASK1 and inactivates it. This prevents the cell from undergoing apoptosis.

The investigators also found that the stress caused by rapamycin requires the presence of a protein called 4E-BP1. This protein stops the cell from using use some types of mRNA (the "decoded" form of DNA) to make proteins, including survival factors. 4E-BP1 is normally held in check by mTOR; so the cell continues to use mRNA to make proteins that are essential for proliferation. However, when rapamycin blocks mTOR, 4E-BP1 is free to put the brakes on.

In cells lacking p53, activation of the JNK cascade by rapamycin occurs so quickly that it might not be caused directly by the inhibition of protein synthesis.

"Right now, we don’t know exactly what sends the cell into crisis after rapamycin blocks mTOR," Houghton said. "Further study is needed to determine what the link is between shutting down production of specific proteins and the cellular crisis that prompts cells to undergo apoptosis."

The strategy of using rapamycin to block mTOR and activate ASK1 could be thwarted by another survival factor, called IGF-I.

"IGF-I prevents rapamycin from activating ASK1, and therefore shuts down the pathway that leads to apoptosis," Houghton said. "So any drug therapy that targets mTOR with the intent of inducing cell death should also include a drug that targets IGF-I signaling. That double hit would leave the cancer cell no choice but to self-destruct."

For this research, Houghton’s team used Rh30 cells--rhabdomyosarcoma cells lacking p53. The team showed that rapamycin caused sustained activation of the JNK cascade; and that exposure of Rh30 cells to IGF-I completed blocked the activation of c-Jun, a critical protein in the JNK cascade that is activated by rapamycin.

The team also showed that the Rh30 cells could be thrown into a crisis by starving them of amino acids, the building blocks of proteins. This stress required the presence of 4E-BP1 and activation of ASK1. Rh30 cells with rapamycin-resistant mTOR did not respond to the drug by triggering apoptosis. This was strong evidence that rapamycin had its effect on apoptosis by blocking mTOR.

St. Jude investigators are now planning clinical trials of two drugs that are rapamycin analogs (slight chemical modifications of rapamycin). The drugs, CCI779 (Wyeth-Ayerst) and RAD001 (Novartis), will be investigated for safety. Clinical trials will investigate their effectiveness in treating neuroblastoma, a cancer of specialized nerve cells involved in the development of the nervous system and other tissues.

Other authors of the paper include Shile Huang, Lili Shu, Michael B. Dilling, John Easton, Franklin C. Harwood (St. Jude) and Hidenori Ichijo (Tokyo Medical and Dental University; Tokyo, Japan).

Contact: Bonnie Cameron, bonnie.cameron@stjude.org

Bonnie Cameron | EurekAlert!
Further information:
http://www.stjude.org

More articles from Health and Medicine:

nachricht Improving memory with magnets
28.03.2017 | McGill University

nachricht Graphene-based neural probes probe brain activity in high resolution
28.03.2017 | Graphene Flagship

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>