Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find new way to trigger self-destruction of certain cancer cells

20.06.2003


Discovery could lead to new drug therapy for some childhood cancers



Investigators at St. Jude Children’s Research Hospital have discovered a previously unrecognized way that certain types of cancer cells can be forced to activate a self-destruction program called apoptosis.

The finding suggests that drugs designed to activate apoptosis might be effective anti-cancer therapies. This strategy would target specific molecules in the cancer cell rather than rely on chemotherapy, which has serious side effects that degrade quality of life. The research is published in the June 20 issue of Molecular Cell.


The St. Jude team stimulated apoptosis by treating cancer cells with a drug called rapamycin, which blocks the action of a protein called mTOR. This protein stimulates a biochemical pathway that leads to increased production of proteins essential for cell proliferation. Blocking mTOR with rapamycin leaves the cell unable to make these critical proteins.

Blocking the activity of mTOR with rapamycin triggers a biochemical pathway called the JNK cascade in cells that lack a gene called p53, according to Peter Houghton, Ph.D., chair of the St. Jude Department of Molecular Pharmacology. Since p53 is mutated and inactive in about half of all types of cancer, blocking mTOR and activating apoptosis in cells with mutated p53 has potentially wide application. Houghton is senior author of the paper reporting these results.

"Shutting down synthesis of proteins essential for cell proliferation by blocking mTOR sends the cell into a crisis," Houghton said. "The cell activates a protein called ASK1, which is at the top of the JNK cascade. ASK1 then sets off the JNK cascade and causes the cells that lack p53 to self-destruct."

In cells that have a functional p53 gene, (e.g., normal cells), a protein called p21 is expressed and--in the presence of rapamycin--binds to ASK1 and inactivates it. This prevents the cell from undergoing apoptosis.

The investigators also found that the stress caused by rapamycin requires the presence of a protein called 4E-BP1. This protein stops the cell from using use some types of mRNA (the "decoded" form of DNA) to make proteins, including survival factors. 4E-BP1 is normally held in check by mTOR; so the cell continues to use mRNA to make proteins that are essential for proliferation. However, when rapamycin blocks mTOR, 4E-BP1 is free to put the brakes on.

In cells lacking p53, activation of the JNK cascade by rapamycin occurs so quickly that it might not be caused directly by the inhibition of protein synthesis.

"Right now, we don’t know exactly what sends the cell into crisis after rapamycin blocks mTOR," Houghton said. "Further study is needed to determine what the link is between shutting down production of specific proteins and the cellular crisis that prompts cells to undergo apoptosis."

The strategy of using rapamycin to block mTOR and activate ASK1 could be thwarted by another survival factor, called IGF-I.

"IGF-I prevents rapamycin from activating ASK1, and therefore shuts down the pathway that leads to apoptosis," Houghton said. "So any drug therapy that targets mTOR with the intent of inducing cell death should also include a drug that targets IGF-I signaling. That double hit would leave the cancer cell no choice but to self-destruct."

For this research, Houghton’s team used Rh30 cells--rhabdomyosarcoma cells lacking p53. The team showed that rapamycin caused sustained activation of the JNK cascade; and that exposure of Rh30 cells to IGF-I completed blocked the activation of c-Jun, a critical protein in the JNK cascade that is activated by rapamycin.

The team also showed that the Rh30 cells could be thrown into a crisis by starving them of amino acids, the building blocks of proteins. This stress required the presence of 4E-BP1 and activation of ASK1. Rh30 cells with rapamycin-resistant mTOR did not respond to the drug by triggering apoptosis. This was strong evidence that rapamycin had its effect on apoptosis by blocking mTOR.

St. Jude investigators are now planning clinical trials of two drugs that are rapamycin analogs (slight chemical modifications of rapamycin). The drugs, CCI779 (Wyeth-Ayerst) and RAD001 (Novartis), will be investigated for safety. Clinical trials will investigate their effectiveness in treating neuroblastoma, a cancer of specialized nerve cells involved in the development of the nervous system and other tissues.

Other authors of the paper include Shile Huang, Lili Shu, Michael B. Dilling, John Easton, Franklin C. Harwood (St. Jude) and Hidenori Ichijo (Tokyo Medical and Dental University; Tokyo, Japan).

Contact: Bonnie Cameron, bonnie.cameron@stjude.org

Bonnie Cameron | EurekAlert!
Further information:
http://www.stjude.org

More articles from Health and Medicine:

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

nachricht Highly precise wiring in the Cerebral Cortex
21.09.2017 | Max-Planck-Institut für Hirnforschung

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>