Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jefferson Scientists Uncover HIV Escape Route from Drugs and Vaccines

30.05.2003


Virologists at Jefferson Medical College may have discovered a new way by which HIV, the AIDS virus, can evade both anti-viral drugs and vaccines.



Researchers had reported last summer that a protein called CEM15 is a natural inhibitor of HIV, acting as a brake on HIV’s replication. They also showed that an HIV-encoded protein, Vif, or Virion infectivity factor, counteracts CEM15. Vif, in effect, is a shield to protect HIV from a host cell’s defenses.

But how CEM15 worked was something of a mystery. Now, Hui Zhang, M.D., Ph.D., Bin Yang, Ph.D., and their colleagues at Jefferson Medical College of Thomas Jefferson University in Philadelphia have found that CEM15 renders HIV essentially dead by altering newly made HIV DNA, causing mutations and preventing replication.


At the same time, the researchers showed that HIV and Vif can subvert this system, enabling the virus to instead make myriad mutations of itself. The major obstacle to creating anti-HIV drugs and vaccines is the virus’ propensity to mutate quickly and often. The researchers report their findings this week in an advanced online publication in the journal Nature.

“This is an important finding because it may be a reason why HIV can escape from vaccines and develop resistance to antiviral drugs,” says virologist Roger J. Pomerantz, M.D., professor of medicine, biochemistry and molecular pharmacology and director of the Center for Human Virology and Biodefense at Jefferson Medical College and a co-author on the Nature paper.

According to Dr. Zhang, who is an associate professor of medicine at Jefferson Medical College, Vif is a regulatory protein needed for the virus to grow and make infectious viruses from certain cells. CEM15 is relative newcomer to the known array of host defense systems.

But little was known about how CEM15 inhibited viral replication. In the Nature paper, he and his colleagues describe results from work in their laboratory showing that CEM15 attacks newly synthesized viral DNA. CEM15 works by either biochemically degrading such DNA or alternatively, causing a “lethal hypermutation,” killing the virus.

In the process of replicating, HIV mutates at a rate 1,000 times higher than normal cells. This high rate of mutation during replication, Dr. Zhang says, has been thought to be the driving force behind viral genetic variation – and the reason it has been so difficult to create treatments against – or prevent – HIV infection.

“No one knew the entire reason why HIV makes a hypermutation,” he says, explaining that during a process called reverse transcription (RT) that occurs in replication, the HIV mutation rate greatly increases. “This paper shows that hypermutations aren’t only caused by HIV RT, but are also made by CEM15, a host defense system.

“HIV is smart,” he says. “The virus sees CEM15 is going to use hypermutation as a way to defeat and kill it. The virus uses a shield, Vif, to protect itself. At the same time, the virus hijacks the antiviral defense system and uses a ‘non-lethal’ hypermutation process to make more mutations. It turns it into its own weapon.”

Accumulating such non-lethal hypermutations means HIV is essentially “using CEM15 to drive genetic variation,” Dr. Zhang says. “These are preliminary data, but it is a beginning,” he says. “It is not an answer, but opens the door for more research. People have to think about the fact that host defense-caused hypermutation may play a role in genetic variation. It could be a key to know how HIV resists drugs and escapes from immunosurveillance and vaccines. The researchers are now working on trying to better understand how HIV Vif fights back against CEM15.

Steven Benowitz | TJUH
Further information:
http://www.jeffersonhospital.org/news/e3front.dll?durki=16476

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>