Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Lithium shows promise against Alzheimer’s in mouse model


An enzyme crucial to formation of Alzheimer’s plaques and tangles may hold promise as a target for future medications, suggest studies in mice and cells. By blocking the enzyme, lithium stems the accumulation of beta amyloid, which forms Alzheimer’s plaques, scientists funded by the National Institutes of Health (NIH) report in the May 22, 2003 Nature. Inhibiting the enzyme, glycogen synthase kinase – 3 alpha (GSK-3 alpha), also blocks formation of neurofibrilary tangles by the tau protein.

"Although widely used to treat bipolar disorder, lithium’s propensity to cause side-effects may limit its use in older people, who are more susceptible to Alzheimer’s disease," cautioned Peter Klein, M.D., University of Pennsylvania School of Medicine, who led the research team, which was funded by the National Institute of Mental Health (NIMH) and the National Institute on Aging (NIA). It will also be important to develop "new agents" that specifically target GSK-3 alpha, he added.

To pinpoint the enzyme’s role in the formation of amyloid plaques, the researchers first treated cells expressing the amyloid precursor protein with lithium, which they had earlier shown blocks GSK-3. Therapeutic doses of lithium inhibited the production of beta amyloid. Another GSK-3 inhibitor, structurally unrelated to lithium, also reduced production of beta amyloid, as did blocking expression of the GSK-3 alpha protein. Likewise, raising GSK-3 alpha levels enhanced beta amyloid production. These experiments established that the enzyme is required for maximal amyloid processing.

In mouse neurons expressing amyloid precursor protein, lithium significantly reduced production of beta amyloid. A therapeutic dose of lithium also markedly reduced the peptides and beta amyloid production in an animal model of Alzheimer’s disease -- mice carrying mutations that are known to cause inherited Alzheimer’s disease in humans.

Since certain non-steroidal anti-inflammatory drugs (NSAIDs) similarly reduce beta amyloid levels, but via a slightly different mechanism, the researchers suggest that combination therapy with lithium and NSAIDs could have an enhanced effect in reducing amyloid peptide accumulation.

Lithium also protects neurons from stimuli that trigger programmed neuronal cell death in Alzheimer’s disease. Pending development of new medications that target the enzyme, the researchers suggest that lithium "might be considered for the prevention of Alzheimer’s disease, especially in younger patients with an inherited form of Alzheimer’s disease or Down’s syndrome."

The new findings have spurred interest in whether patients taking lithium for bipolar disorder might have a lower incidence of Alzheimer’s disease, Klein noted.

Other participants in the study were: Drs. Christopher Phiel, Christina Wilson, Virginia M.-Y. Lee., University of Pennsylvania School of Medicine.

NIMH and NIA are part of the NIH, the Federal Government’s primary agency for biomedical and behavioral research. NIH is a component of the U.S. Department of Health and Human Services.

Contacts: Jules Asher
NIMH press office

Doug Dollomore
NIA press office

Jules Asher | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>