Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New mouse model will aid research on premature aging syndrome

15.05.2003


Researchers from the National Cancer Institute (NCI) have developed a mouse model of the premature aging syndrome known as Hutchinson-Gilford Progeria Syndrome (HGPS), according to a report appearing in the journal Nature. Researchers hope the mouse model will facilitate a better understanding of the fatal syndrome, as well as provide clues to the normal aging process.



Currently, there is no treatment for progeria, and children with the rare condition usually die of heart disease in their early teens. Although normal at birth, children with progeria begin to develop growth retardation, thinning skin, and fragile bones as young as 18 months.

"The similarities between mice with this particular mutation and patients with progeria are remarkable," said Colin Stewart, Ph.D., of NCI’s Center for Cancer Research, the senior investigator on the study. "Now that we’ve identified the critical gene and have an animal model that mimics progeria, we have powerful tools for studying both the aging process and this devastating disease."


The results of the animal study come less than a month after the announcement that scientists have discovered the gene responsible for progeria in children. Studies published in March in the journals Science and Nature described a single inaccuracy in the Lamin A (Lmna) gene that appears to account for the syndrome. The gene produces structural proteins known as lamins, which are found in the cell nucleus. In the new study, NCI researchers report that mice with a specific mutation in the same gene have symptoms remarkably consistent with those of progeria patients.

Although indistinguishable from their littermates at birth, mice with the Lmna mutation develop severe growth retardation early in life and die within five weeks, whereas normal mice generally live up to two years. Like progeria patients, mice in the study showed signs of premature aging.

In the mice, accelerated aging was most apparent in the skin, which thinned dramatically and lost hair. Researchers also observed reduced growth or degeneration of the heart and skeletal muscles in mutant mice. Similarly, the mice had either incomplete development of the skeleton or a premature loss of bone mass, also characteristic of children with progeria. Mice with the Lmna mutation shared many other symptoms with progeria patients, including a slight waddling gait, abnormal teeth, and incomplete sexual maturation.

The Lmna gene codes for A- and C-type lamins, components of the fibrous network lining the inside of the cell nucleus called the nuclear lamina. The mutant form of the gene associated with progeria symptoms causes disruption in the structure of the cell nucleus. Studying the relationship between progeria symptoms and this abnormality could help researchers understand the cellular processes associated with aging.

NCI Press Officer | EurekAlert!
Further information:
http://www.nci.nih.gov/
http://cancer.gov

More articles from Health and Medicine:

nachricht 'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers
16.02.2018 | National University of Science and Technology MISIS

nachricht New process allows tailor-made malaria research
16.02.2018 | Eberhard Karls Universität Tübingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>