Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny protein prevents disease-related cell death

12.05.2003


Tiny protein targets Bax, inhibits apoptosis



Researchers at The Burnham Institute have found that humanin, a small, 24-amino acid protein recently discovered in studies of Alzheimer’s Disease, suppresses activation of the protein Bax. Bax triggers pathologic cell death in a number of diseases, including Parkinson’s, stroke, heart attack and degeneration of ovaries during menopause. These results, to be published later this month in the journal Nature (currently available at the journal’s website), suggest a novel target for therapeutic design based on inhibiting the cell destructive activity of Bax.

Bax protein is known to promote the cell death program (also known as apoptosis) latent in all cells. It does so by attacking the cell’s powerhouse, called “mitochondria”, resulting in the cell’s demise. Apoptosis is critical for normal development and maintaining cell balance. Many diseases are identified with malfunction of apoptosis: too much cell death is associated with degenerative diseases of the nervous system, stroke and heart attack; failure to activate the cell death program is one of the hallmarks of cancer.


Dr. Reed’s laboratory identified humanin as a Bax-interactive protein. In the current study, they showed that humanin bound to Bax, which prevented its targeting to mitochondria and blocked its ability to cause cell death.

“Our results demonstrate that Bax is the target of humanin, and they suggest at least three novel ways of designing therapeutics that could prevent or arrest diseases associated with activation of Bax,” says Dr. Reed.

Dr. Reed envisions that the tiny protein humanin could be synthesized and developed as an injectable drug for acute situations, such as heart attack or stroke, because humanin has the unique ability to readily enter cells. Gene therapy that exploits humanin’s ability to translocate from cell to cell could also be developed to protect cells in the vicinity of the gene’s injection, such as the heart or certain regions of the brain. Structural information about humanin could be used to pattern chemicals developed into pill form, for more convenient administration protecting against pathological cell death.



Dr. Reed is President and CEO of The Burnham Institute, and Professor in the Institute’s Del E. Webb Center for Neuroscience and Aging Research and in the Cancer Center.

Co-author Arnold Satterthwait, Ph.D., Burnham Institute Professor, synthesized peptides used in this study.

This research was supported by grants from the National Institutes of Health, and the Department of Defense.

The Burnham Institute is an independent, nonprofit, public benefit organization dedicated to basic biomedical research principally in the areas of cancer, aging, and the neurosciences. The Institute ranks consistently among the world’s most influential research organizations for the impact of its research in analyses conducted annually by the Institute for Scientific Information.

Nancy Beddingfield | EurekAlert!
Further information:
http://www.burnham-inst.org/

More articles from Health and Medicine:

nachricht NTU scientists build new ultrasound device using 3-D printing technology
07.12.2016 | Nanyang Technological University

nachricht How to turn white fat brown
07.12.2016 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>