Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny protein prevents disease-related cell death

12.05.2003


Tiny protein targets Bax, inhibits apoptosis



Researchers at The Burnham Institute have found that humanin, a small, 24-amino acid protein recently discovered in studies of Alzheimer’s Disease, suppresses activation of the protein Bax. Bax triggers pathologic cell death in a number of diseases, including Parkinson’s, stroke, heart attack and degeneration of ovaries during menopause. These results, to be published later this month in the journal Nature (currently available at the journal’s website), suggest a novel target for therapeutic design based on inhibiting the cell destructive activity of Bax.

Bax protein is known to promote the cell death program (also known as apoptosis) latent in all cells. It does so by attacking the cell’s powerhouse, called “mitochondria”, resulting in the cell’s demise. Apoptosis is critical for normal development and maintaining cell balance. Many diseases are identified with malfunction of apoptosis: too much cell death is associated with degenerative diseases of the nervous system, stroke and heart attack; failure to activate the cell death program is one of the hallmarks of cancer.


Dr. Reed’s laboratory identified humanin as a Bax-interactive protein. In the current study, they showed that humanin bound to Bax, which prevented its targeting to mitochondria and blocked its ability to cause cell death.

“Our results demonstrate that Bax is the target of humanin, and they suggest at least three novel ways of designing therapeutics that could prevent or arrest diseases associated with activation of Bax,” says Dr. Reed.

Dr. Reed envisions that the tiny protein humanin could be synthesized and developed as an injectable drug for acute situations, such as heart attack or stroke, because humanin has the unique ability to readily enter cells. Gene therapy that exploits humanin’s ability to translocate from cell to cell could also be developed to protect cells in the vicinity of the gene’s injection, such as the heart or certain regions of the brain. Structural information about humanin could be used to pattern chemicals developed into pill form, for more convenient administration protecting against pathological cell death.



Dr. Reed is President and CEO of The Burnham Institute, and Professor in the Institute’s Del E. Webb Center for Neuroscience and Aging Research and in the Cancer Center.

Co-author Arnold Satterthwait, Ph.D., Burnham Institute Professor, synthesized peptides used in this study.

This research was supported by grants from the National Institutes of Health, and the Department of Defense.

The Burnham Institute is an independent, nonprofit, public benefit organization dedicated to basic biomedical research principally in the areas of cancer, aging, and the neurosciences. The Institute ranks consistently among the world’s most influential research organizations for the impact of its research in analyses conducted annually by the Institute for Scientific Information.

Nancy Beddingfield | EurekAlert!
Further information:
http://www.burnham-inst.org/

More articles from Health and Medicine:

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

nachricht Highly precise wiring in the Cerebral Cortex
21.09.2017 | Max-Planck-Institut für Hirnforschung

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>