Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

3D mammography shows promise as next breast screening technique

08.05.2003


“Full-field digital tomosynthesis is mammography--only better,” researchers say of a new technique that just might be the next generation of breast cancer screening. Two new studies on this technique illustrate that full-field digital tomosynthesis (TOMO) can not only increase the visibility of breast lesions but could likely dramatically reduce the number of patients being called back for a second mammogram because their first screening mammogram was unclear.



In the first study, researchers compared standard plain film mammography to TOMO. Forty patients were included in the study. Radiologists detected 16 of 22 malignant lesions on mammography and 18 of 22 malignant lesions on TOMO, says Elizabeth Rafferty, MD, lead author of both studies. TOMO was superior to plain film mammography in detecting masses and architectural distortions, which results from a tethering or pulling in of the tissue, says Dr. Rafferty. Calcifications were not as conspicuous on the tomosynthesis imaging during the pilot study, she says. “We are currently implementing a solution to this challenge and will have data on this soon,” she adds.

In the second study, 45 patients were reviewed. All patients had been called back for a second mammogram because their first showed a possible abnormality; “30 of them were subsequently found by additional mammographic views to have breast tissue overlap accounting for their possible abnormality,” she says. Fifteen patients went on to biopsy. “We asked radiologists to look at the TOMO study (without knowing the results of the second mammogram or biopsy) and indicate whether they would have called these patients back for additional evaluation,” says Dr. Rafferty. They indicated that they would have only called back five of the 30 patients who had breast tissue overlap. “If we could have used TOMO on these patients initially, it would have saved 25 women the anxiety they felt and the inconvenience they experienced of being called back for additional tests,” notes Dr. Rafferty.


The radiologists indicated that they would have recalled 14 of the 15 patients who had a biopsy, says Dr. Rafferty. A single reader missed one cancer, she says. “This is well within the standard interobserver variability seen with conventional mammography,” she adds.

“TOMO allows us to take multiple projections of the breast at different angles. These projections are then reconstructed into a three-dimensional data set. We can then look at each slice individually and assess each area of the breast without confusing overlap from surrounding structures,” Dr. Rafferty says. “The ability to look at individual slices of the breast is a real asset,” she says.

TOMO is more comfortable for the patient. The patient’s breasts only need to be compressed once (compared to twice for the standard two-view mammogram); the patient sits during the procedure, and the overall radiation dose is lower, says Dr. Rafferty. Dr. Rafferty cautions, however, that “full-field digital tomosynthesis is still in its infancy.” However, she predicts, “this technique will only get better.” Researchers at Massachusetts General Hospital conceived, developed, and patented full-field breast tomosynthesis, and, in conjunction with General Electric, built the only prototype currently in clinical use. To date, more than 350 clinical tomosynthesis studies have been performed at Massachusetts General Hospital under research protocols.


Dr. Rafferty will present the results of her studies on May 8 during the American Roentgen Ray Society Annual Meeting in San Diego.

Contact: Keri J. Sperry (703) 858-4306
Danica Laub (703) 858-4332
Press Room: (619) 525-6536 (May 5-8)

Keri Sperry | EurekAlert!
Further information:
http://www.arrs.org/

More articles from Health and Medicine:

nachricht Scientists learn more about how gene linked to autism affects brain
19.06.2018 | Cincinnati Children's Hospital Medical Center

nachricht Overdosing on Calcium
19.06.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Creating a new composite fuel for new-generation fast reactors

20.06.2018 | Materials Sciences

Game-changing finding pushes 3D-printing to the molecular limit

20.06.2018 | Materials Sciences

Could this material enable autonomous vehicles to come to market sooner?

20.06.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>