Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists find genetic key to TB bacteria survival in lung cells

15.04.2003


New research led by a University of North Carolina at Chapel Hill scientist shows for the first time how Mycobacterium tuberculosis, the germ responsible for TB, uses a system for releasing proteins to help it survive the lungs’ immune defenses to spread and cause disease.



The study, published online in the April issue of Molecular Microbiology, also adds crucial new knowledge to the molecular factors that underlie the virulence of M. tuberculosis and may aid development of new, targeted treatments for the disease.

"I think this study moves us along in our understanding of TB pathogenesis," said study lead author Dr. Miriam Braunstein, assistant professor of microbiology and immunology at UNC’s School of Medicine.


In 2003, 10 years after the World Health Organization declared tuberculosis a global emergency, tuberculosis remains a severe worldwide health threat. More people die from the disease than from any other curable infectious disease. TB kills approximately 2 million people every year, 98 percent in developing countries. One-third of the world’s population is infected with the TB bacillus.

In the report, Braunstein and co-authors Drs. William R. Jacobs Jr. and John Chan from New York’s Albert Einstein College of Medicine, and Drs. Benjamin Espinosa and John T. Belisle from Colorado State University said numerous disease-causing bacteria "possess specialized protein secretion systems that are dedicated to the export of virulence factors."

The TB bacillus possesses in its genome the genes secA1 and secA2, the researchers said. In a previous report, Braunstein and others had shown that the protein SecA1 is essential for the bacillus, whereas SecA2 is not. Both of these proteins are similar to SecA, a protein that functions in the secretion process of all other bacteria.

However, the presence of multiple SecA proteins in a single bacterium is highly unusual and only shared with a few other pathogenic bacteria.

"In this study, we wanted to see if the two SecAs do the same thing or have different functions. We had a hunch that SecA2 was involved in the bacteria’s virulence, that it might be dedicated to secreting a specific subset of proteins involved in virulence," Braunstein said. To test that hypothesis, she and her colleagues genetically engineered a mutant strain of M. tuberculosis that did not have secA2. This gene deletion meant it could not produce the protein SecA2.

"We tested the strain for virulence by infecting mice with it and observed how long the mice survived over time," Braunstein said. "And we found that the mice infected with mutant TB survived longer than ’wild-type’ mice infected with TB having a functioning secA2 gene. This told us the mutant strain was not as virulent."

To further examine virulence, the researchers also examined the extent of bacterial growth in the lung, liver and spleen. "Those experiments showed the same thing," she said. "When TB is missing SecA2, it is less virulent. There is less bacterial growth, particularly in the lung."

Having demonstrated that SecA2 is required for virulence, the next step was to identify the virulence factor secreted by the protein. Two of the proteins dependent on SecA2 that were identified were antioxidant molecules: superoxide dismutase-A and catalase-peroxidase.

When M. tuberculosis is inhaled and enters the lungs via the small air sacs called alveoli, the bacteria becomes aggressively attacked and engulfed by macrophages, immune system scavenger cells. But where other bacteria succumb to the attack, TB survives in macrophage, having evolved over the millennia a mechanism to overcome the "oxidative burst" leveled at it.

"These SecA2-dependent secretions, superoxide dismutase and catalase-peroxidase are enzymes that actually scavenge the oxygen radicals that are shot at the bacteria," Braunstein said.

"All mycobacteria strains, including TB, appear to have two secA genes. So I think a long time ago the gene duplicated benignly, but one of those secAs evolved to provide a protective advantage for the pathogen. That’s why it’s still there and important to pathogen survival in macrophages."

Thus, according to the researcher, the two enzymes secreted by secA2 act as virulence factors contributing to TB’s defense against destruction in the macrophage. Moreover, this newly described virulence mechanism may apply to other types of disease-causing bacteria.

"In the last year or so, a number of Gram-positive bacterial pathogens have been identified that have two SecA proteins," Braunstein said. Important Gram-positive pathogens with two SecAs include Listeria monocytogenes, Staphylococcus aureus and Streptococcus pneumoniae.

"Gram-positive" refers to the grouping of bacteria relating to its outer structure.

"In some it has already been shown that the extra secA2 gene is required for virulence. So it might be common to certain bacterial pathogens."

Someday, drugs against TB infection could be developed aimed at blocking this secretion system, Braunstein said. "For now, the results of this study offer some new and important insights into the pathogenesis of this serious health threat."


The research was funded by the National Institute of Allergy and Infectious Diseases and the Howard Hughes Medical Institute.

Note: Contact Braunstein at (919) 966-5051 or miriam_braunstein@med.unc.edu.
School of Medicine contact: Leslie Lang, (919) 843-9687 or llang@med.unc.edu

Leslie Lang | EurekAlert!
Further information:
http://www.med.unc.edu/

More articles from Health and Medicine:

nachricht How cancer metastasis happens: Researchers reveal a key mechanism
19.01.2018 | Weill Cornell Medicine

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>