Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists find genetic key to TB bacteria survival in lung cells

15.04.2003


New research led by a University of North Carolina at Chapel Hill scientist shows for the first time how Mycobacterium tuberculosis, the germ responsible for TB, uses a system for releasing proteins to help it survive the lungs’ immune defenses to spread and cause disease.



The study, published online in the April issue of Molecular Microbiology, also adds crucial new knowledge to the molecular factors that underlie the virulence of M. tuberculosis and may aid development of new, targeted treatments for the disease.

"I think this study moves us along in our understanding of TB pathogenesis," said study lead author Dr. Miriam Braunstein, assistant professor of microbiology and immunology at UNC’s School of Medicine.


In 2003, 10 years after the World Health Organization declared tuberculosis a global emergency, tuberculosis remains a severe worldwide health threat. More people die from the disease than from any other curable infectious disease. TB kills approximately 2 million people every year, 98 percent in developing countries. One-third of the world’s population is infected with the TB bacillus.

In the report, Braunstein and co-authors Drs. William R. Jacobs Jr. and John Chan from New York’s Albert Einstein College of Medicine, and Drs. Benjamin Espinosa and John T. Belisle from Colorado State University said numerous disease-causing bacteria "possess specialized protein secretion systems that are dedicated to the export of virulence factors."

The TB bacillus possesses in its genome the genes secA1 and secA2, the researchers said. In a previous report, Braunstein and others had shown that the protein SecA1 is essential for the bacillus, whereas SecA2 is not. Both of these proteins are similar to SecA, a protein that functions in the secretion process of all other bacteria.

However, the presence of multiple SecA proteins in a single bacterium is highly unusual and only shared with a few other pathogenic bacteria.

"In this study, we wanted to see if the two SecAs do the same thing or have different functions. We had a hunch that SecA2 was involved in the bacteria’s virulence, that it might be dedicated to secreting a specific subset of proteins involved in virulence," Braunstein said. To test that hypothesis, she and her colleagues genetically engineered a mutant strain of M. tuberculosis that did not have secA2. This gene deletion meant it could not produce the protein SecA2.

"We tested the strain for virulence by infecting mice with it and observed how long the mice survived over time," Braunstein said. "And we found that the mice infected with mutant TB survived longer than ’wild-type’ mice infected with TB having a functioning secA2 gene. This told us the mutant strain was not as virulent."

To further examine virulence, the researchers also examined the extent of bacterial growth in the lung, liver and spleen. "Those experiments showed the same thing," she said. "When TB is missing SecA2, it is less virulent. There is less bacterial growth, particularly in the lung."

Having demonstrated that SecA2 is required for virulence, the next step was to identify the virulence factor secreted by the protein. Two of the proteins dependent on SecA2 that were identified were antioxidant molecules: superoxide dismutase-A and catalase-peroxidase.

When M. tuberculosis is inhaled and enters the lungs via the small air sacs called alveoli, the bacteria becomes aggressively attacked and engulfed by macrophages, immune system scavenger cells. But where other bacteria succumb to the attack, TB survives in macrophage, having evolved over the millennia a mechanism to overcome the "oxidative burst" leveled at it.

"These SecA2-dependent secretions, superoxide dismutase and catalase-peroxidase are enzymes that actually scavenge the oxygen radicals that are shot at the bacteria," Braunstein said.

"All mycobacteria strains, including TB, appear to have two secA genes. So I think a long time ago the gene duplicated benignly, but one of those secAs evolved to provide a protective advantage for the pathogen. That’s why it’s still there and important to pathogen survival in macrophages."

Thus, according to the researcher, the two enzymes secreted by secA2 act as virulence factors contributing to TB’s defense against destruction in the macrophage. Moreover, this newly described virulence mechanism may apply to other types of disease-causing bacteria.

"In the last year or so, a number of Gram-positive bacterial pathogens have been identified that have two SecA proteins," Braunstein said. Important Gram-positive pathogens with two SecAs include Listeria monocytogenes, Staphylococcus aureus and Streptococcus pneumoniae.

"Gram-positive" refers to the grouping of bacteria relating to its outer structure.

"In some it has already been shown that the extra secA2 gene is required for virulence. So it might be common to certain bacterial pathogens."

Someday, drugs against TB infection could be developed aimed at blocking this secretion system, Braunstein said. "For now, the results of this study offer some new and important insights into the pathogenesis of this serious health threat."


The research was funded by the National Institute of Allergy and Infectious Diseases and the Howard Hughes Medical Institute.

Note: Contact Braunstein at (919) 966-5051 or miriam_braunstein@med.unc.edu.
School of Medicine contact: Leslie Lang, (919) 843-9687 or llang@med.unc.edu

Leslie Lang | EurekAlert!
Further information:
http://www.med.unc.edu/

More articles from Health and Medicine:

nachricht Cholesterol-lowering drugs may fight infectious disease
22.08.2017 | Duke University

nachricht Once invincible superbug squashed by 'superteam' of antibiotics
22.08.2017 | University at Buffalo

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>