Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists find genetic key to TB bacteria survival in lung cells

15.04.2003


New research led by a University of North Carolina at Chapel Hill scientist shows for the first time how Mycobacterium tuberculosis, the germ responsible for TB, uses a system for releasing proteins to help it survive the lungs’ immune defenses to spread and cause disease.



The study, published online in the April issue of Molecular Microbiology, also adds crucial new knowledge to the molecular factors that underlie the virulence of M. tuberculosis and may aid development of new, targeted treatments for the disease.

"I think this study moves us along in our understanding of TB pathogenesis," said study lead author Dr. Miriam Braunstein, assistant professor of microbiology and immunology at UNC’s School of Medicine.


In 2003, 10 years after the World Health Organization declared tuberculosis a global emergency, tuberculosis remains a severe worldwide health threat. More people die from the disease than from any other curable infectious disease. TB kills approximately 2 million people every year, 98 percent in developing countries. One-third of the world’s population is infected with the TB bacillus.

In the report, Braunstein and co-authors Drs. William R. Jacobs Jr. and John Chan from New York’s Albert Einstein College of Medicine, and Drs. Benjamin Espinosa and John T. Belisle from Colorado State University said numerous disease-causing bacteria "possess specialized protein secretion systems that are dedicated to the export of virulence factors."

The TB bacillus possesses in its genome the genes secA1 and secA2, the researchers said. In a previous report, Braunstein and others had shown that the protein SecA1 is essential for the bacillus, whereas SecA2 is not. Both of these proteins are similar to SecA, a protein that functions in the secretion process of all other bacteria.

However, the presence of multiple SecA proteins in a single bacterium is highly unusual and only shared with a few other pathogenic bacteria.

"In this study, we wanted to see if the two SecAs do the same thing or have different functions. We had a hunch that SecA2 was involved in the bacteria’s virulence, that it might be dedicated to secreting a specific subset of proteins involved in virulence," Braunstein said. To test that hypothesis, she and her colleagues genetically engineered a mutant strain of M. tuberculosis that did not have secA2. This gene deletion meant it could not produce the protein SecA2.

"We tested the strain for virulence by infecting mice with it and observed how long the mice survived over time," Braunstein said. "And we found that the mice infected with mutant TB survived longer than ’wild-type’ mice infected with TB having a functioning secA2 gene. This told us the mutant strain was not as virulent."

To further examine virulence, the researchers also examined the extent of bacterial growth in the lung, liver and spleen. "Those experiments showed the same thing," she said. "When TB is missing SecA2, it is less virulent. There is less bacterial growth, particularly in the lung."

Having demonstrated that SecA2 is required for virulence, the next step was to identify the virulence factor secreted by the protein. Two of the proteins dependent on SecA2 that were identified were antioxidant molecules: superoxide dismutase-A and catalase-peroxidase.

When M. tuberculosis is inhaled and enters the lungs via the small air sacs called alveoli, the bacteria becomes aggressively attacked and engulfed by macrophages, immune system scavenger cells. But where other bacteria succumb to the attack, TB survives in macrophage, having evolved over the millennia a mechanism to overcome the "oxidative burst" leveled at it.

"These SecA2-dependent secretions, superoxide dismutase and catalase-peroxidase are enzymes that actually scavenge the oxygen radicals that are shot at the bacteria," Braunstein said.

"All mycobacteria strains, including TB, appear to have two secA genes. So I think a long time ago the gene duplicated benignly, but one of those secAs evolved to provide a protective advantage for the pathogen. That’s why it’s still there and important to pathogen survival in macrophages."

Thus, according to the researcher, the two enzymes secreted by secA2 act as virulence factors contributing to TB’s defense against destruction in the macrophage. Moreover, this newly described virulence mechanism may apply to other types of disease-causing bacteria.

"In the last year or so, a number of Gram-positive bacterial pathogens have been identified that have two SecA proteins," Braunstein said. Important Gram-positive pathogens with two SecAs include Listeria monocytogenes, Staphylococcus aureus and Streptococcus pneumoniae.

"Gram-positive" refers to the grouping of bacteria relating to its outer structure.

"In some it has already been shown that the extra secA2 gene is required for virulence. So it might be common to certain bacterial pathogens."

Someday, drugs against TB infection could be developed aimed at blocking this secretion system, Braunstein said. "For now, the results of this study offer some new and important insights into the pathogenesis of this serious health threat."


The research was funded by the National Institute of Allergy and Infectious Diseases and the Howard Hughes Medical Institute.

Note: Contact Braunstein at (919) 966-5051 or miriam_braunstein@med.unc.edu.
School of Medicine contact: Leslie Lang, (919) 843-9687 or llang@med.unc.edu

Leslie Lang | EurekAlert!
Further information:
http://www.med.unc.edu/

More articles from Health and Medicine:

nachricht Satellites, airport visibility readings shed light on troops' exposure to air pollution
09.12.2016 | Veterans Affairs Research Communications

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>