Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gladstone researchers find method to study hidden HIV reservoirs

15.04.2003


Scientists are now one step closer to understanding how HIV hides in cells and rears its ugly head once patients stop taking combination drug therapy, which can suppress viral loads to undetectable levels. The phenomenon reflects the existence of hidden populations of latently infected cells. As a result, patients must remain on therapy for life.



Eradication of these cells could lead to a cure for HIV infection. However, researchers have been hampered by their inability to identify them.

Now Gladstone researchers have found a way to identify and study latently infected cells in the laboratory. Their work is published in the April 15 issue of the European Molecular Biology Organization Journal.


"The latent pool is considered to be the barrier to eradication," said senior author Eric Verdin, MD, senior investigator at the Gladstone Institute of Virology and Immunology and UCSF professor of medicine. "Our work is geared toward finding a way to obliterate this latent pool, which would take us closer to actually finding a cure for AIDS."

Through genetic engineering, the researchers constructed a recombinant HIV strain carrying a green fluorescent protein. Using this marker, they identified a small fraction of infected cells in which the virus was latent. These cells represented less than one percent of the infected population and had eluded purification until this study.

"Before, the study of latent infection was restricted to the analysis of rare cells circulating in the blood of infected patients. As an experimental model to dissect the molecular basis of latency, these cells were very limiting," Verdin said. "We now have a laboratory model that we can use to delve deeply into what is going on."

During infection, the HIV genome integrates into the host cell’s DNA. Transcription of the viral genome leads to production of virus. The Gladstone researchers found that, in latently infected cells, the HIV genome is integrated into transcriptionally inactive regions of DNA called heterochromatin.

Verdin and his colleagues are now trying to identify drugs that can activate latent cells and cause them to produce virus. A preliminary screen identified a number of compounds that can reactivate latent HIV in the laboratory.

"Hopefully, we will be soon in a position to test some of these compounds in an animal model infected with a virus related to HIV. This will allow us to determine whether the "flushing" of latent pools is a viable therapeutic approach in HIV infection," Verdin said.


The other authors of the study are Albert A. Jordan, PhD, and Dwayne A. Bisgrove, PhD. Both are postdoctoral fellows at Gladstone.

The Gladstone Institute of Virology and Immunology is one of three research institutes at The J. David Gladstone Institutes, a private nonprofit biomedical research institution affiliated with UCSF. The institutes are named for a prominent real estate developer who died in 1971. His will created a testamentary trust that reflected his long-standing interest in medical education and research.

Daniel Oshiro | EurekAlert!
Further information:
http://www.ucsf.edu/

More articles from Health and Medicine:

nachricht Satellites, airport visibility readings shed light on troops' exposure to air pollution
09.12.2016 | Veterans Affairs Research Communications

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>