Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Gladstone researchers find method to study hidden HIV reservoirs


Scientists are now one step closer to understanding how HIV hides in cells and rears its ugly head once patients stop taking combination drug therapy, which can suppress viral loads to undetectable levels. The phenomenon reflects the existence of hidden populations of latently infected cells. As a result, patients must remain on therapy for life.

Eradication of these cells could lead to a cure for HIV infection. However, researchers have been hampered by their inability to identify them.

Now Gladstone researchers have found a way to identify and study latently infected cells in the laboratory. Their work is published in the April 15 issue of the European Molecular Biology Organization Journal.

"The latent pool is considered to be the barrier to eradication," said senior author Eric Verdin, MD, senior investigator at the Gladstone Institute of Virology and Immunology and UCSF professor of medicine. "Our work is geared toward finding a way to obliterate this latent pool, which would take us closer to actually finding a cure for AIDS."

Through genetic engineering, the researchers constructed a recombinant HIV strain carrying a green fluorescent protein. Using this marker, they identified a small fraction of infected cells in which the virus was latent. These cells represented less than one percent of the infected population and had eluded purification until this study.

"Before, the study of latent infection was restricted to the analysis of rare cells circulating in the blood of infected patients. As an experimental model to dissect the molecular basis of latency, these cells were very limiting," Verdin said. "We now have a laboratory model that we can use to delve deeply into what is going on."

During infection, the HIV genome integrates into the host cell’s DNA. Transcription of the viral genome leads to production of virus. The Gladstone researchers found that, in latently infected cells, the HIV genome is integrated into transcriptionally inactive regions of DNA called heterochromatin.

Verdin and his colleagues are now trying to identify drugs that can activate latent cells and cause them to produce virus. A preliminary screen identified a number of compounds that can reactivate latent HIV in the laboratory.

"Hopefully, we will be soon in a position to test some of these compounds in an animal model infected with a virus related to HIV. This will allow us to determine whether the "flushing" of latent pools is a viable therapeutic approach in HIV infection," Verdin said.

The other authors of the study are Albert A. Jordan, PhD, and Dwayne A. Bisgrove, PhD. Both are postdoctoral fellows at Gladstone.

The Gladstone Institute of Virology and Immunology is one of three research institutes at The J. David Gladstone Institutes, a private nonprofit biomedical research institution affiliated with UCSF. The institutes are named for a prominent real estate developer who died in 1971. His will created a testamentary trust that reflected his long-standing interest in medical education and research.

Daniel Oshiro | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Steering a fusion plasma toward stability

28.10.2016 | Power and Electrical Engineering

Bioluminescent sensor causes brain cells to glow in the dark

28.10.2016 | Life Sciences

Activation of 2 genes linked to development of atherosclerosis

28.10.2016 | Life Sciences

More VideoLinks >>>