Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gladstone researchers find method to study hidden HIV reservoirs

15.04.2003


Scientists are now one step closer to understanding how HIV hides in cells and rears its ugly head once patients stop taking combination drug therapy, which can suppress viral loads to undetectable levels. The phenomenon reflects the existence of hidden populations of latently infected cells. As a result, patients must remain on therapy for life.



Eradication of these cells could lead to a cure for HIV infection. However, researchers have been hampered by their inability to identify them.

Now Gladstone researchers have found a way to identify and study latently infected cells in the laboratory. Their work is published in the April 15 issue of the European Molecular Biology Organization Journal.


"The latent pool is considered to be the barrier to eradication," said senior author Eric Verdin, MD, senior investigator at the Gladstone Institute of Virology and Immunology and UCSF professor of medicine. "Our work is geared toward finding a way to obliterate this latent pool, which would take us closer to actually finding a cure for AIDS."

Through genetic engineering, the researchers constructed a recombinant HIV strain carrying a green fluorescent protein. Using this marker, they identified a small fraction of infected cells in which the virus was latent. These cells represented less than one percent of the infected population and had eluded purification until this study.

"Before, the study of latent infection was restricted to the analysis of rare cells circulating in the blood of infected patients. As an experimental model to dissect the molecular basis of latency, these cells were very limiting," Verdin said. "We now have a laboratory model that we can use to delve deeply into what is going on."

During infection, the HIV genome integrates into the host cell’s DNA. Transcription of the viral genome leads to production of virus. The Gladstone researchers found that, in latently infected cells, the HIV genome is integrated into transcriptionally inactive regions of DNA called heterochromatin.

Verdin and his colleagues are now trying to identify drugs that can activate latent cells and cause them to produce virus. A preliminary screen identified a number of compounds that can reactivate latent HIV in the laboratory.

"Hopefully, we will be soon in a position to test some of these compounds in an animal model infected with a virus related to HIV. This will allow us to determine whether the "flushing" of latent pools is a viable therapeutic approach in HIV infection," Verdin said.


The other authors of the study are Albert A. Jordan, PhD, and Dwayne A. Bisgrove, PhD. Both are postdoctoral fellows at Gladstone.

The Gladstone Institute of Virology and Immunology is one of three research institutes at The J. David Gladstone Institutes, a private nonprofit biomedical research institution affiliated with UCSF. The institutes are named for a prominent real estate developer who died in 1971. His will created a testamentary trust that reflected his long-standing interest in medical education and research.

Daniel Oshiro | EurekAlert!
Further information:
http://www.ucsf.edu/

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>