Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Proteomics research aids cancer diagnosis and treatment

11.04.2003


A new technique may allow physicians to monitor patients’ responses to molecularly targeted drugs, according to researchers from the National Cancer Institute (NCI) and the Food and Drug Administration (FDA) *. The finding was one of three advances in proteomics – the study of proteins within cells – scheduled to be announced by researchers from the NCI-FDA Clinical Proteomics Program in a press briefing at the 94th Annual American Association for Cancer Research (AACR) Annual Meeting, which was canceled.



Monitoring Cancer Treatment

In the first study, the researchers successfully identified specific proteins that may be useful in monitoring patients treated for breast or ovarian cancer. Their approach, based on changing levels of active proteins inside tumor cells, could help physicians determine early during treatment whether a particular drug is working effectively for an individual cancer patient.


"The results of our study suggest this approach may help us tailor treatment to individual patients," noted Virginia Espina, M.S., M.T. (ASCP), NCI, the lead investigator on the study.

Because molecularly targeted drugs are designed to target specific molecules that have gone awry in cancer cells, researchers can predict which of the cell’s many complex signaling pathways these drugs are likely to affect. In ongoing studies at NCI, researchers are using proteomic technology to monitor the key pathways likely to be influenced by the molecularly targeted drugs Gleevec®, Herceptin®, and Iressa®.

To monitor changes in tumor cell proteins, the researchers isolated cancer cells from tumor biopsies and measured the level of various proteins involved in the signaling pathways targeted by the drugs. The scientists measured not only the total amount of each protein, but also how much of the protein was in its active form. These proteins were measured prior to treatment and at selected times after treatment.

The researchers found that prior to treatment, patients with breast cancer who had a poor clinical outcome tended to have more of the active form of a protein known as AKT, which promotes cell survival. Treatment with Herceptin®, however, resulted in a change in the relative amount of the active form of AKT, enabling tumor cell death.

"Treatment with Herceptin® appears to alter the level of active AKT in tumors. We may be able to measure the degree of this change in patients who are receiving treatment to determine whether a drug that inhibits this signaling pathway is best for their individual cancer," said Lance Liotta, M.D., Ph.D., co-director of the Clinical Proteomics Program and the senior NCI investigator on the study.

The researchers expect to be able to apply the proteomic approach to monitor the treatment of other cancers with molecularly targeted drugs, but further research is required to identify the best proteins to measure in those tumors.

Diagnosing Ovarian Cancer

In another study, in collaboration with Correlogic Systems Inc., NCI and FDA scientists have improved the NCI/FDA/Correlogic method of ovarian cancer diagnosis currently under evaluation**. The approach uses Correlogic’s artificial intelligence computer programs to analyze the patterns of proteins in the blood and can detect the presence of disease even at early stages. In a previously published study, researchers used the technique to successfully differentiate between blood samples taken from patients with ovarian cancer and those from unaffected individuals.

The researchers discovered patterns of proteins that correctly identify 100 percent of blood samples as being from either unaffected individuals or patients with ovarian cancer. This is an improvement on the previous analysis, which correctly identified 100 percent of the samples from patients with cancer, but only 95 percent of the non-cancer samples. The researchers analyzed the proteins using mass spectroscopy, a technique that sorts proteins and other molecules based on their weight and electrical charge; they attribute the improvement in specificity primarily to the use of a higher resolution mass spectrometer in the most recent study. "The increased resolution allows us to distinguish more features within the patterns generated from the serum samples," said Timothy Veenstra, Ph.D., of the Mass Spectrometry Center at NCI-Frederick.

Visualizing Protein Patterns

The NCI-FDA team has also developed new tools for visualizing and analyzing protein patterns***. Beyond identifying the presence of ovarian cancer and other diseases, these tools may allow researchers to determine how far the disease has progressed by matching specific proteomic patterns to a particular stage.

"The new tools improve upon previous methods of identifying discriminatory protein patterns by allowing researchers to visualize the entire set of proteins in a single view, as well as zoom in and out to focus on regions of interest within the data," said Emanuel Petricoin III, Ph.D., co-director of the Clinical Proteomics Program and the senior FDA researcher on the project.

"Using these visualization tools, the identification of proteomic patterns that aid in disease diagnosis can be done with greater sensitivity and accuracy," said Donald Johann Jr., M.D., of the NCI-FDA Clinical Proteomics Program, lead investigator of the study. "This new method reduces the risk of error, increases our productivity, and provides an efficient method to analyze large sets of protein data.

NCI Press Office | EurekAlert!
Further information:
http://cancer.gov/cancerinfo/digestpage/proteomics
http://cancer.gov/cancerinfo/digestpage/proteomics

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>