Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New High-Tech Approach Identifies Two Proteins Involved in Lung Cancer

08.04.2003


Researchers at Duke University Medical Center have devised an advanced technique that uses mass spectrometry to identify specific proteins that are over-expressed in cancer cells, blood, urine, or any substance that contains proteins.



Using this new technique, they have already identified two proteins – MIF and CyP-A -- whose levels are elevated in lung cancer cells but not in normal cells, said Edward Patz, M.D., professor of radiology and pharmacology and cancer biology at Duke.

Their discovery is one of the first steps toward elucidating potential new drug targets aimed at blocking the effects of these proteins. Scientists could also develop a simple blood test using MIF and CyP-A as molecular markers to diagnose lung cancer without the need for invasive biopsies.


Results of the study are published in the April 1, 2003, issue of Cancer Research.

"Our technique is a new paradigm for identifying protein targets in cancer because we are zeroing in on the protein itself rather than searching for a defective gene and then hunting down its relevant proteins," said Patz, lead author of the study

The new technique uses a sophisticated analytical instrument called a mass spectrometer, which electrically charges or "ionizes" proteins, then determines each particle’s precise mass and relative abundance in a particular sample. The Duke team has expanded the use of mass spectrometry to determine the identity of proteins -- the first time this technique has ever been used to "fingerprint" proteins in lung cancer.

In doing so, they have reversed the traditional order of research in which scientists first identify a defective gene, and then identify the disease-specific protein it produces. Locating a defective gene is important, but it is only the starting point in the discovery process, emphasized Patz. A single gene can produce many different proteins, only one of which may be the culprit in a particular disease process, he said. Identifying the protein puts scientists much closer to the intended target of therapy, said Patz.

"Finding a new approach that can pinpoint which proteins contribute to malignancy is critical because current approaches we use to diagnose and treat lung cancer have had no significant impact on lung cancer mortality over the last several decades," said Patz. Despite extensive efforts in genomics, drug discovery and lung cancer screenings, the overall five-year survival rate remains about 14 percent, he said.

The Duke team, including molecular biologist Michael Campa Ph.D., and mass spectrometry expert Michael Fitzgerald, Ph.D., used an instrument called a "matrix-assisted laser desorption/ionization time-of-flight mass spectrometer" (MALDI-TOF) to electrically charge tumor particles. The instrument then determines each particle’s precise mass and hence its level or "expression" within tumors. The scientists then took the most significant protein "peaks" recorded by the instrument and purified the samples repeatedly until they were able to determine each protein’s unique amino acid structure or fingerprint.

The two proteins they identified in the lung cancer samples were MIF and CyP-A. MIF is known to be involved in non-small cell lung cancers, but CyP-A was not previously linked to lung cancer, and its exact functions in cancer are unknown. However, it may play a role in cellular growth and differentiation, transcription control, cell signaling and immunosuppression, all of which are important aspects of malignancy, said the researchers.

While the Duke team is not the first to observe significant protein peaks using MALDI-TOF, they are the first to actually identify which proteins they have observed and to begin analyzing the proteins’ functions within tumor cells.

"Scientists have generated protein peaks and used them to diagnose various diseases, but we have gone an extra step to discover what the protein is and to ultimately use that protein as a potential molecular target for therapy and diagnostics," said Patz. "It is useful to know that you have a marker for the disease, but it is far more useful to understand the biology of disease and use that knowledge to develop new strategies."

Even more exciting, said Patz, is that MALDI-TOF can be used to identify proteins in any substance, including blood, sputum, urine and tissue. The instrument can detect proteins of low molecular mass, acidic or basic proteins, and at concentrations much lower than other techniques are able to detect, thereby expanding the utility of MALDI-TOF to virtually any disease process.

Because of its sensitivity, Patz plans to use MALDI-TOF to develop a blood serum test to diagnose lung cancer in patients. Currently, patients with suspected lung cancers undergo multiple imaging studies using CT or PET, while others require a biopsy to analyze the tissue for malignancy. A simple blood test would spare patients from these procedures.

contact sources :
Dr. Edward Patz , 919-684-7311
patz0002@mc.duke.edu

Becky Levine | Duke University
Further information:
http://dukemednews.org/news/article.php?id=6487

More articles from Health and Medicine:

nachricht World first: Massive thrombosis removed during early pregnancy
20.07.2017 | Universitätsspital Bern

nachricht Therapy of preterm birth in sight?
19.07.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

Leipzig HTP-Forum discusses "hydrothermal processes" as a key technology for a biobased economy

12.07.2017 | Event News

 
Latest News

Researchers create new technique for manipulating polarization of terahertz radiation

20.07.2017 | Information Technology

High-tech sensing illuminates concrete stress testing

20.07.2017 | Materials Sciences

First direct observation and measurement of ultra-fast moving vortices in superconductors

20.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>