Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New High-Tech Approach Identifies Two Proteins Involved in Lung Cancer

08.04.2003


Researchers at Duke University Medical Center have devised an advanced technique that uses mass spectrometry to identify specific proteins that are over-expressed in cancer cells, blood, urine, or any substance that contains proteins.



Using this new technique, they have already identified two proteins – MIF and CyP-A -- whose levels are elevated in lung cancer cells but not in normal cells, said Edward Patz, M.D., professor of radiology and pharmacology and cancer biology at Duke.

Their discovery is one of the first steps toward elucidating potential new drug targets aimed at blocking the effects of these proteins. Scientists could also develop a simple blood test using MIF and CyP-A as molecular markers to diagnose lung cancer without the need for invasive biopsies.


Results of the study are published in the April 1, 2003, issue of Cancer Research.

"Our technique is a new paradigm for identifying protein targets in cancer because we are zeroing in on the protein itself rather than searching for a defective gene and then hunting down its relevant proteins," said Patz, lead author of the study

The new technique uses a sophisticated analytical instrument called a mass spectrometer, which electrically charges or "ionizes" proteins, then determines each particle’s precise mass and relative abundance in a particular sample. The Duke team has expanded the use of mass spectrometry to determine the identity of proteins -- the first time this technique has ever been used to "fingerprint" proteins in lung cancer.

In doing so, they have reversed the traditional order of research in which scientists first identify a defective gene, and then identify the disease-specific protein it produces. Locating a defective gene is important, but it is only the starting point in the discovery process, emphasized Patz. A single gene can produce many different proteins, only one of which may be the culprit in a particular disease process, he said. Identifying the protein puts scientists much closer to the intended target of therapy, said Patz.

"Finding a new approach that can pinpoint which proteins contribute to malignancy is critical because current approaches we use to diagnose and treat lung cancer have had no significant impact on lung cancer mortality over the last several decades," said Patz. Despite extensive efforts in genomics, drug discovery and lung cancer screenings, the overall five-year survival rate remains about 14 percent, he said.

The Duke team, including molecular biologist Michael Campa Ph.D., and mass spectrometry expert Michael Fitzgerald, Ph.D., used an instrument called a "matrix-assisted laser desorption/ionization time-of-flight mass spectrometer" (MALDI-TOF) to electrically charge tumor particles. The instrument then determines each particle’s precise mass and hence its level or "expression" within tumors. The scientists then took the most significant protein "peaks" recorded by the instrument and purified the samples repeatedly until they were able to determine each protein’s unique amino acid structure or fingerprint.

The two proteins they identified in the lung cancer samples were MIF and CyP-A. MIF is known to be involved in non-small cell lung cancers, but CyP-A was not previously linked to lung cancer, and its exact functions in cancer are unknown. However, it may play a role in cellular growth and differentiation, transcription control, cell signaling and immunosuppression, all of which are important aspects of malignancy, said the researchers.

While the Duke team is not the first to observe significant protein peaks using MALDI-TOF, they are the first to actually identify which proteins they have observed and to begin analyzing the proteins’ functions within tumor cells.

"Scientists have generated protein peaks and used them to diagnose various diseases, but we have gone an extra step to discover what the protein is and to ultimately use that protein as a potential molecular target for therapy and diagnostics," said Patz. "It is useful to know that you have a marker for the disease, but it is far more useful to understand the biology of disease and use that knowledge to develop new strategies."

Even more exciting, said Patz, is that MALDI-TOF can be used to identify proteins in any substance, including blood, sputum, urine and tissue. The instrument can detect proteins of low molecular mass, acidic or basic proteins, and at concentrations much lower than other techniques are able to detect, thereby expanding the utility of MALDI-TOF to virtually any disease process.

Because of its sensitivity, Patz plans to use MALDI-TOF to develop a blood serum test to diagnose lung cancer in patients. Currently, patients with suspected lung cancers undergo multiple imaging studies using CT or PET, while others require a biopsy to analyze the tissue for malignancy. A simple blood test would spare patients from these procedures.

contact sources :
Dr. Edward Patz , 919-684-7311
patz0002@mc.duke.edu

Becky Levine | Duke University
Further information:
http://dukemednews.org/news/article.php?id=6487

More articles from Health and Medicine:

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

nachricht NTU scientists build new ultrasound device using 3-D printing technology
07.12.2016 | Nanyang Technological University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>