Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Say Deadly Twist Key To Sickle Cell Disease

31.03.2003


Patients with sickle cell disease have mutant haemoglobin proteins that form deadly long, stiff fibres inside red blood cells. A research team led by University of Warwick researcher Dr Matthew Turner, propose a mathematical model in the 28 March online issue of PRL to explain the persistent stability of these deadly fibres. The theory suggests that an inherent "twistiness" in the strands that make up the fibres could be the key to their durability and possibly to new treatments.



Red blood cells supply oxygen to the body using their cargo of haemoglobin, a protein that can capture and release oxygen. Haemoglobin molecules normally float freely in the cell, but sickle cell patients have a mutated, "sticky," form of haemoglobin that tends to clump together into long fibres. The stiff fibres form a scaffolding that distorts the cells into their namesake "sickle" shape, so they jam up trying to pass through small blood vessels. The traffic jams deprive vital organs of oxygen, so patients end up with anaemia, jaundice, major organ damage, and many other maladies.

A sickle haemoglobin fibre can be made up of anywhere from 14 to more than 400 individual strands of haemoglobin molecules linked into long chains. Matthew Turner, of the University of Warwick in the UK, wondered why these strands tend to clump together into long, stiff, fibres rather than compact crystals, which would be less harmful. "A scaffolding made of the rigid fibres is much worse than a couple little sugar-cube-like crystals floating around," Turner says. So he and his colleagues constructed a mathematical model.


The team’s equations start with the trade-offs that exist in any material as it tries to find the shape with the least overall stress. The forces at work include bending and stretching, and for haemoglobin strands, there is also a propensity to stick together. This stickiness would normally make a thick, compact crystal more stable than a thin fibre, Turner explains, because a crystal maximizes the contact area of the protein with itself. But for sickle haemoglobin, fibres are more stable. To favour fibres, the equations needed to include the fact that the individual strands of molecules are inherently "twisty." They behave like the coiled wire that attaches a telephone to its handset, apparently because the molecules link up in a way that favours twisting. The strands wrap around one another like threads of rope to form the fibres. In their paper, the team shows that their model’s predictions for two of the mechanical properties of fibres agree with experiments.

Turner says that the model suggests a possible treatment for sickle cell disease. Gene therapy could introduce a haemoglobin mutant that formed less-twisty individual strands, and this "good mutant" might turn fibres into less harmful crystals. Simply introducing normal haemoglobin has been shown not to work, perhaps because the few normal haemoglobin molecules cannot eliminate the fibres.

Peter Dunn | alfa
Further information:
http://www.communicate.warwick.ac.uk/index.cfm?page=pressrelease&id=973

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>