Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Say Deadly Twist Key To Sickle Cell Disease

31.03.2003


Patients with sickle cell disease have mutant haemoglobin proteins that form deadly long, stiff fibres inside red blood cells. A research team led by University of Warwick researcher Dr Matthew Turner, propose a mathematical model in the 28 March online issue of PRL to explain the persistent stability of these deadly fibres. The theory suggests that an inherent "twistiness" in the strands that make up the fibres could be the key to their durability and possibly to new treatments.



Red blood cells supply oxygen to the body using their cargo of haemoglobin, a protein that can capture and release oxygen. Haemoglobin molecules normally float freely in the cell, but sickle cell patients have a mutated, "sticky," form of haemoglobin that tends to clump together into long fibres. The stiff fibres form a scaffolding that distorts the cells into their namesake "sickle" shape, so they jam up trying to pass through small blood vessels. The traffic jams deprive vital organs of oxygen, so patients end up with anaemia, jaundice, major organ damage, and many other maladies.

A sickle haemoglobin fibre can be made up of anywhere from 14 to more than 400 individual strands of haemoglobin molecules linked into long chains. Matthew Turner, of the University of Warwick in the UK, wondered why these strands tend to clump together into long, stiff, fibres rather than compact crystals, which would be less harmful. "A scaffolding made of the rigid fibres is much worse than a couple little sugar-cube-like crystals floating around," Turner says. So he and his colleagues constructed a mathematical model.


The team’s equations start with the trade-offs that exist in any material as it tries to find the shape with the least overall stress. The forces at work include bending and stretching, and for haemoglobin strands, there is also a propensity to stick together. This stickiness would normally make a thick, compact crystal more stable than a thin fibre, Turner explains, because a crystal maximizes the contact area of the protein with itself. But for sickle haemoglobin, fibres are more stable. To favour fibres, the equations needed to include the fact that the individual strands of molecules are inherently "twisty." They behave like the coiled wire that attaches a telephone to its handset, apparently because the molecules link up in a way that favours twisting. The strands wrap around one another like threads of rope to form the fibres. In their paper, the team shows that their model’s predictions for two of the mechanical properties of fibres agree with experiments.

Turner says that the model suggests a possible treatment for sickle cell disease. Gene therapy could introduce a haemoglobin mutant that formed less-twisty individual strands, and this "good mutant" might turn fibres into less harmful crystals. Simply introducing normal haemoglobin has been shown not to work, perhaps because the few normal haemoglobin molecules cannot eliminate the fibres.

Peter Dunn | alfa
Further information:
http://www.communicate.warwick.ac.uk/index.cfm?page=pressrelease&id=973

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>