Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Teaming up to attack free radicals

24.03.2003


Antibody/enzyme combo protects transplanted lungs from oxidative stress damage


Protecting endothelial cells with targeted antioxidant enzymes (AOE). The AOE, catalase in this case, connected to an antibody binds to endothelial cells (EC) and detoxifies reactive oxygen species (ROS), which can cause free radical damage.



Researchers based at the University of Pennsylvania School of Medicine have combined the precision of antibodies with the power of an antioxidant enzyme to create a new way to protect transplanted lungs from oxidative stress – also known as free radical damage – before and during transplantation.

Their findings, presented in the April edition of Nature Biotechnology and available online now, demonstrate the therapeutic potential of immunotargeting as a drug delivery system. Oxidative stress causes some degree of damage in 15-20% of all transplants and is the leading cause of acute lung graft failure. By protecting the lungs from damage, the researchers have determined that they can increase lung-graft survivability and the length of time a donated lung can be kept in cold storage.


"It is a simple theory that has been difficult to put into practice: get an antibody that will go to a specific target and attach a therapeutic to go along for the ride," said Vladimir R. Muzykantov, MD, PhD, assistant professor in Penn’s Department of Pharmacology. "Endothelial cells – the cells that line the interior of blood vessels – bristle with possible targets for antibodies to cling to as they rush through the bloodstream. This targeted delivery of drugs has enormous potential for treating a variety of endothelial cell disorders, including cancer and cardiovascular and pulmonary disease."

To protect transplanted lungs against oxidative stress, Muzykantov and his colleagues chemically coupled catalase, an enzyme that detoxifies oxidants, with an antibody for the platelet-endothelial cell adhesion molecule-1 (PECAM). Their findings in animal models show that anti-PECAM/catalase hybrid construct strengthened antioxidant defenses, lessened free-radical damage, reduced transplantation-associated acute lung injury, and improved the overall survivability of the lung graft.

"All organs, and lungs in particular, suffer a great deal during the time they are removed, transported, and put in to another body." said Steven M. Albelda, MD, vice chief of the Pulmonary, Allergy, and Critical Care Division of Penn’s Department of Medicine. "In fact, our findings show that the anti-PECAM/catalase is most effective when given to the donor prior to organ removal, as it protects the lung when it is in cold storage."

According to the researchers, the PECAM molecule was an attractive target because there are a great many of them on the surface endothelial cells, even during times of physiological stress. Following transplant, the researchers were able to determine that the anti-PECAM/catalase conjugates accumulated in the blood vessels of the lungs and retained their activity for a prolonged period during cold storage, transplantation, and the restoration of blood flow.

"Endothelial cells are particularly vulnerable to oxidative stress but, unfortunately, most antioxidant enzymes do not last very long in the bloodstream," said Muzykantov. "By combining an antioxidant with an antibody, we can direct an enzyme to where it needs to be and keep it there."

According to Muzykantov, their research provides a proof-of-concept for this method of drug delivery. They are seeking to further streamline the process by which they can join the anti-PECAM antibody to the catalase enzyme in order to make the anti-PECAM/catalase into a more effective and easily produced therapeutic.

"This immunotargeting approach may be extremely valuable," said Muzykantov. "It could reduce injury during clinical lung transplantation and may dramatically increase the amount of time that lung grafts are stored, thereby increasing the pool of donor lungs for use in clinical transplantation. This approach could also likely be applied to other organ transplants."


Other Penn researchers involved in this paper include Melpo Christofidou-Solomidou from the Department of Medicine, and Thomas D. Sweitzer, Donald G. Buerk, and Silvia Muro from Penn’s Institute for Environmental Medicine. Researchers contributing from other institutions include Charalambos C. Solomides of Temple University, and Benjamin D. Kozower and G. Alexander Patterson of Washington University.

Funding for this research was provided by the National Institutes of Health and the American Lung Association. The anti-PECAM antibody was a gift from Dr. Marian Nakada, Centocor, Inc., of Malvern, Pennsylvania.

Greg Lester | EurekAlert!

More articles from Health and Medicine:

nachricht Highly precise wiring in the Cerebral Cortex
21.09.2017 | Max-Planck-Institut für Hirnforschung

nachricht PET imaging tracks Zika virus infection, disease progression in mouse model
20.09.2017 | US Army Medical Research Institute of Infectious Diseases

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Glycosylation: Mapping Uncharted Territory

21.09.2017 | Life Sciences

Highly precise wiring in the Cerebral Cortex

21.09.2017 | Health and Medicine

Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?

21.09.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>