Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Teaming up to attack free radicals

24.03.2003


Antibody/enzyme combo protects transplanted lungs from oxidative stress damage


Protecting endothelial cells with targeted antioxidant enzymes (AOE). The AOE, catalase in this case, connected to an antibody binds to endothelial cells (EC) and detoxifies reactive oxygen species (ROS), which can cause free radical damage.



Researchers based at the University of Pennsylvania School of Medicine have combined the precision of antibodies with the power of an antioxidant enzyme to create a new way to protect transplanted lungs from oxidative stress – also known as free radical damage – before and during transplantation.

Their findings, presented in the April edition of Nature Biotechnology and available online now, demonstrate the therapeutic potential of immunotargeting as a drug delivery system. Oxidative stress causes some degree of damage in 15-20% of all transplants and is the leading cause of acute lung graft failure. By protecting the lungs from damage, the researchers have determined that they can increase lung-graft survivability and the length of time a donated lung can be kept in cold storage.


"It is a simple theory that has been difficult to put into practice: get an antibody that will go to a specific target and attach a therapeutic to go along for the ride," said Vladimir R. Muzykantov, MD, PhD, assistant professor in Penn’s Department of Pharmacology. "Endothelial cells – the cells that line the interior of blood vessels – bristle with possible targets for antibodies to cling to as they rush through the bloodstream. This targeted delivery of drugs has enormous potential for treating a variety of endothelial cell disorders, including cancer and cardiovascular and pulmonary disease."

To protect transplanted lungs against oxidative stress, Muzykantov and his colleagues chemically coupled catalase, an enzyme that detoxifies oxidants, with an antibody for the platelet-endothelial cell adhesion molecule-1 (PECAM). Their findings in animal models show that anti-PECAM/catalase hybrid construct strengthened antioxidant defenses, lessened free-radical damage, reduced transplantation-associated acute lung injury, and improved the overall survivability of the lung graft.

"All organs, and lungs in particular, suffer a great deal during the time they are removed, transported, and put in to another body." said Steven M. Albelda, MD, vice chief of the Pulmonary, Allergy, and Critical Care Division of Penn’s Department of Medicine. "In fact, our findings show that the anti-PECAM/catalase is most effective when given to the donor prior to organ removal, as it protects the lung when it is in cold storage."

According to the researchers, the PECAM molecule was an attractive target because there are a great many of them on the surface endothelial cells, even during times of physiological stress. Following transplant, the researchers were able to determine that the anti-PECAM/catalase conjugates accumulated in the blood vessels of the lungs and retained their activity for a prolonged period during cold storage, transplantation, and the restoration of blood flow.

"Endothelial cells are particularly vulnerable to oxidative stress but, unfortunately, most antioxidant enzymes do not last very long in the bloodstream," said Muzykantov. "By combining an antioxidant with an antibody, we can direct an enzyme to where it needs to be and keep it there."

According to Muzykantov, their research provides a proof-of-concept for this method of drug delivery. They are seeking to further streamline the process by which they can join the anti-PECAM antibody to the catalase enzyme in order to make the anti-PECAM/catalase into a more effective and easily produced therapeutic.

"This immunotargeting approach may be extremely valuable," said Muzykantov. "It could reduce injury during clinical lung transplantation and may dramatically increase the amount of time that lung grafts are stored, thereby increasing the pool of donor lungs for use in clinical transplantation. This approach could also likely be applied to other organ transplants."


Other Penn researchers involved in this paper include Melpo Christofidou-Solomidou from the Department of Medicine, and Thomas D. Sweitzer, Donald G. Buerk, and Silvia Muro from Penn’s Institute for Environmental Medicine. Researchers contributing from other institutions include Charalambos C. Solomides of Temple University, and Benjamin D. Kozower and G. Alexander Patterson of Washington University.

Funding for this research was provided by the National Institutes of Health and the American Lung Association. The anti-PECAM antibody was a gift from Dr. Marian Nakada, Centocor, Inc., of Malvern, Pennsylvania.

Greg Lester | EurekAlert!

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>