Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Body’s own antibodies may drive new strains of HIV

18.03.2003


Study Sheds light on HIV mutation process; May help guide AIDS vaccine development

Scientists in California have provided the first detailed look at how human antibodies, proteins critical for the body’s defense against invading pathogens, may actually drive human immunodeficiency virus (HIV) to mutate and escape detection by the immune system. The findings, reported online March 18 in the Proceedings of the National Academy of Sciences, may be key in efforts to develop an effective AIDS vaccine.

A team led by Douglas D. Richman, MD, a virologist and physician with the Veterans Affairs (VA) San Diego Healthcare System and the University of California, San Diego (UCSD) School of Medicine, found that patients infected with HIV rapidly develop a strong antibody response against the virus. But the same antibodies tasked with recognizing and disabling the germ appear to force its ongoing evolution into new strains that dance around the antibody response and continue to replicate.



"The neutralizing antibodies are exerting a very strong selective pressure on the virus, and the virus is continually mutating to avoid it," said Richman, a noted AIDS researcher who recently won VA’s Middleton Award, the agency’s highest honor for biomedical researchers.

The researchers used sophisticated new technology, made by California-based ViroLogic, Inc., to clone actual virus from the blood plasma of HIV patients and genetically combine it with a gene that makes luciferase, the same light-emitting enzyme in fireflies. The glowing enzyme helped the scientists track the virus’ replication.

Richman and colleagues took viral samples periodically from HIV patients and incubated the virus with antibody-containing plasma samples from the same patients. Blood plasma contains antibodies but no white blood cells. This way, the researchers could tease out the effects of antibodies alone on the virus, independent of the rest of the immune system.

The results, based on tests of 19 patients over 39 months, showed that most patients developed a high concentration, or titer, of antibodies to HIV within a few months, and the antibodies continually changed their "spectrum of activity" to keep pace with the ever-changing virus. That is, the antibodies evolved in their ability to recognize different protein shapes on the outer coating of the virus.

However the virus consistently evolved faster than the antibody response, developing new protein structures on its surface, so that antibodies from previous months’ samples were ineffective in neutralizing new virus from the same patient.

"The bad news is that the virus is always staying a step ahead, and the neutralizing antibody response can’t control it," said Richman.

At the same time, Richman said neutralizing antibodies could hold promise as a therapy, or vaccine, if scientists can engineer them to recognize many different strains of virus.

"An optimistic view is that this antibody response is a very potent selective force," said Richman. "If it were present at the time of exposure [to the virus], it could provide some protection."

The AIDS virus has been described as a "genetic moving target" because of its frustrating ability to rapidly mutate and escape the body’s efforts to neutralize or destroy it. In fact, up to dozens of strains can develop within the same person. Also, HIV infects and disables the very immune cells, helper T cells, which are supposed to mobilize the immune system against the virus. Richman’s study is the first to track in detail how the virus outpaces the antibody response over time.

Since 1987, researchers have studied about 60 potential HIV vaccines to help stem the AIDS epidemic. So far, no vaccine has won Food and Drug Administration approval as safe and effective. Most scientists agree that for a vaccine to work, it will need to activate both arms of the immune system: antibodies, which are key in thwarting the initial infection; and killer white blood cells, which provide longer-term protection. In recent years, AIDS scientists have made progress on the cellular front; several vaccines using this approach are in the pipeline for clinical trials. But understanding how to get neutralizing antibodies to work against HIV has proved a tougher challenge.

According to the Centers for Disease Control and Prevention, 800,000 to 900,000 Americans are living with HIV infection. VA, the nation’s largest health-care system, is also the nation’s largest single provider of health care to those with HIV. In fiscal year 2001, more than 18,500 veterans received care for HIV at VA medical centers and clinics.


###
Richman directs VA’s Research Center for AIDS and HIV Infection and the Center for AIDS Research at UCSD. Collaborating with him on the study were Susan J. Little, MD, a principal investigator in UCSD’s Antiviral Research Center and a VA infectious disease specialist; and Terri L. Wrin and Christos J. Petropoulos of ViroLogic, Inc. The firm, which specializes in HIV drug resistance testing, developed the DNA viral test used in the study. Richman serves on the company’s scientific advisory board.

Funding for the study was provided by the National Institutes of Health, VA, and UCSD.

Cynthia Butler (VA)
(858) 552-4373
Cynthia.butler@med.va.gov

Sue Pondrom (UCSD)
(619) 543-6163
Spondrom@ucsd.edu

Cynthia Butler | EurekAlert!

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>