Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Mayo Clinic proves new heart muscle cells can come from bone marrow


Mayo Clinic researchers have proven for the first time that cells produced by the bone marrow can form new heart-muscle cells in adults, providing an important boost to research that could enable the body to replace heart muscle damaged by heart attack. The findings are now available online and will be published tomorrow in Circulation: Journal of the American Heart Association.

"Until recently, the heart has been seen as an organ that cannot be healed," says Noel Caplice, M.D., the Mayo Clinic cardiologist who led the study. "Heart-attack damage to the myocardium, or heart muscle, was considered irreversible. This study points the way to a process that could lead to heart repair."

The researchers studied four female patients with leukemia who had survived 35 to 600 days after receiving bone-marrow transplants from male donors. Heart tissue samples were examined at autopsy using special staining techniques, which showed that a small portion of the heart-muscle cells, or cardiomyocytes, contained male genetic material and had therefore originated from the donor marrow. Of the more than 80,000 cell nuclei examined, about 1 in 425 (.23 percent) contained the y chromosome.

The study is important because it is the first confirmation that progenitor cells from outside the heart are capable of forming new heart muscle cells. "These progenitor cells are produced by the bone marrow and circulate in the blood," explains Dr. Caplice. "They are like stem cells in that they have potential to develop into various kinds of cells. Given the right biological signals, we have now shown they can become heart cells."

Dr. Caplice says the study has significant implications for future research. "Under normal conditions, with less than one percent of heart-muscle cells originating from these progenitor cells, they obviously are not adding much to the heart’s pumping strength. But if we can determine the signaling mechanism that causes progenitor cells to develop into cardiomyocytes, we may be able to boost the response and induce more of them to proceed in that direction. A growth hormone delivered to the heart could perhaps lead to formation of new muscle around an area of scar tissue, so the heart could actually be healed after being damaged by heart attack. This study provides an important validation of the potential for this new line of research," Dr. Caplice concludes.

Additional Contact Information:
Lee Aase
507-266-2442 (days)
507-284-2511 (evenings)

Lee Aase | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht NIH scientists describe potential antibody treatment for multidrug-resistant K. pneumoniae
14.03.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht Researchers identify key step in viral replication
13.03.2018 | University of Pittsburgh Schools of the Health Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>