Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mayo Clinic proves new heart muscle cells can come from bone marrow

11.03.2003


Mayo Clinic researchers have proven for the first time that cells produced by the bone marrow can form new heart-muscle cells in adults, providing an important boost to research that could enable the body to replace heart muscle damaged by heart attack. The findings are now available online and will be published tomorrow in Circulation: Journal of the American Heart Association.



"Until recently, the heart has been seen as an organ that cannot be healed," says Noel Caplice, M.D., the Mayo Clinic cardiologist who led the study. "Heart-attack damage to the myocardium, or heart muscle, was considered irreversible. This study points the way to a process that could lead to heart repair."

The researchers studied four female patients with leukemia who had survived 35 to 600 days after receiving bone-marrow transplants from male donors. Heart tissue samples were examined at autopsy using special staining techniques, which showed that a small portion of the heart-muscle cells, or cardiomyocytes, contained male genetic material and had therefore originated from the donor marrow. Of the more than 80,000 cell nuclei examined, about 1 in 425 (.23 percent) contained the y chromosome.


The study is important because it is the first confirmation that progenitor cells from outside the heart are capable of forming new heart muscle cells. "These progenitor cells are produced by the bone marrow and circulate in the blood," explains Dr. Caplice. "They are like stem cells in that they have potential to develop into various kinds of cells. Given the right biological signals, we have now shown they can become heart cells."

Dr. Caplice says the study has significant implications for future research. "Under normal conditions, with less than one percent of heart-muscle cells originating from these progenitor cells, they obviously are not adding much to the heart’s pumping strength. But if we can determine the signaling mechanism that causes progenitor cells to develop into cardiomyocytes, we may be able to boost the response and induce more of them to proceed in that direction. A growth hormone delivered to the heart could perhaps lead to formation of new muscle around an area of scar tissue, so the heart could actually be healed after being damaged by heart attack. This study provides an important validation of the potential for this new line of research," Dr. Caplice concludes.

Additional Contact Information:
Lee Aase
507-266-2442 (days)
507-284-2511 (evenings)

Lee Aase | EurekAlert!
Further information:
http://www.mayo.edu/

More articles from Health and Medicine:

nachricht The end of pneumonia? New vaccine offers hope
23.10.2017 | University at Buffalo

nachricht Scientists track ovarian cancers to site of origin: Fallopian tubes
23.10.2017 | Johns Hopkins Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Single nanoparticle mapping paves the way for better nanotechnology

24.10.2017 | Physics and Astronomy

A quantum spin liquid

24.10.2017 | Physics and Astronomy

Antibiotic resistance: a strain of multidrug-resistant Escherichia coli is on the rise

24.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>