Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Preventing cancer: Scientists identify a useful piece of JNK

06.03.2003


The JNK signaling pathway allows cells to respond to changes in their extracellular environment and in doing so, controls many aspects of cell function including cell proliferation, differentiation and death. Studies have also shown that this pathway plays a role in cancer, although it has been unclear whether active JNK signaling can accelerate or protect cells from becoming cancerous. Several studies using cultured cells have suggested that JNK signaling may be important for promoting tumor cell development, while studies of tumors from human patients have indicated that JNK signaling may act to suppress tumor development.



Dr. Davis and colleagues set out to address the role of JNK signaling in tumor formation using cells from mice that have been engineered to be deficient in JNK signaling. They demonstrated that in vitro, JNK signaling does indeed play a role in transforming normal cells into those displaying the characteristics of tumor cells.

However, when they moved their experiments into a mouse model of tumor development, it was clear that JNK signaling is not required for tumor formation. In fact, the scientists actually found the opposite - that the absence of JNK signaling resulted in a dramatic increase in the number and growth of tumors when compared to control animals. This result suggests that in vivo, JNK signaling acts to suppress tumor development.


The scientists went on to examine how JNK signaling puts the brakes on tumor development and protects from disease. "The mechanism of action of JNK in tumor suppression involves the induced suicide of the defective cells that are destined to become tumor cells," explains Dr Davis. Cell suicide (or apoptosis) of unhealthy cells is a key protective mechanism against the development of cancer. In the mice studied in these experiments, loss of JNK signaling prevented apoptosis of unhealthy cells and thus promoted tumor cell survival.

Dr. Davis also comments on the implications of these findings: "Our study indicates that mutations in the JNK signaling pathway genes in human tumors may contribute to malignant cancer progression. It is likely that this information will be useful for diagnosis and for the design of appropriate treatment strategies." He points out that attempts to target anti-cancer drugs to inhibit the JNK pathway should be treated with caution, as in some cases this is likely to do more harm than good. Finally, he offers a word of caution: "Our conclusions are limited to the analysis of mice with a single type of cancer.

Further studies are required to extend our conclusions to humans and to the study of other types of cancer." Nevertheless, the work offers new insights into the cellular changes underlying some cancers and underscores the need for in vivo experiments to better understand the role of specific signaling.

Michele McDonough | EurekAlert!
Further information:
http://www.cshl.org/

More articles from Health and Medicine:

nachricht Electrical 'switch' in brain's capillary network monitors activity and controls blood flow
27.03.2017 | Larner College of Medicine at the University of Vermont

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>