Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Preventing cancer: Scientists identify a useful piece of JNK

06.03.2003


The JNK signaling pathway allows cells to respond to changes in their extracellular environment and in doing so, controls many aspects of cell function including cell proliferation, differentiation and death. Studies have also shown that this pathway plays a role in cancer, although it has been unclear whether active JNK signaling can accelerate or protect cells from becoming cancerous. Several studies using cultured cells have suggested that JNK signaling may be important for promoting tumor cell development, while studies of tumors from human patients have indicated that JNK signaling may act to suppress tumor development.



Dr. Davis and colleagues set out to address the role of JNK signaling in tumor formation using cells from mice that have been engineered to be deficient in JNK signaling. They demonstrated that in vitro, JNK signaling does indeed play a role in transforming normal cells into those displaying the characteristics of tumor cells.

However, when they moved their experiments into a mouse model of tumor development, it was clear that JNK signaling is not required for tumor formation. In fact, the scientists actually found the opposite - that the absence of JNK signaling resulted in a dramatic increase in the number and growth of tumors when compared to control animals. This result suggests that in vivo, JNK signaling acts to suppress tumor development.


The scientists went on to examine how JNK signaling puts the brakes on tumor development and protects from disease. "The mechanism of action of JNK in tumor suppression involves the induced suicide of the defective cells that are destined to become tumor cells," explains Dr Davis. Cell suicide (or apoptosis) of unhealthy cells is a key protective mechanism against the development of cancer. In the mice studied in these experiments, loss of JNK signaling prevented apoptosis of unhealthy cells and thus promoted tumor cell survival.

Dr. Davis also comments on the implications of these findings: "Our study indicates that mutations in the JNK signaling pathway genes in human tumors may contribute to malignant cancer progression. It is likely that this information will be useful for diagnosis and for the design of appropriate treatment strategies." He points out that attempts to target anti-cancer drugs to inhibit the JNK pathway should be treated with caution, as in some cases this is likely to do more harm than good. Finally, he offers a word of caution: "Our conclusions are limited to the analysis of mice with a single type of cancer.

Further studies are required to extend our conclusions to humans and to the study of other types of cancer." Nevertheless, the work offers new insights into the cellular changes underlying some cancers and underscores the need for in vivo experiments to better understand the role of specific signaling.

Michele McDonough | EurekAlert!
Further information:
http://www.cshl.org/

More articles from Health and Medicine:

nachricht Cystic fibrosis alters the structure of mucus in airways
28.06.2017 | University of Iowa Health Care

nachricht Mice provide insight into genetics of autism spectrum disorders
28.06.2017 | University of California - Davis

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>