Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Preventing cancer: Scientists identify a useful piece of JNK

06.03.2003


The JNK signaling pathway allows cells to respond to changes in their extracellular environment and in doing so, controls many aspects of cell function including cell proliferation, differentiation and death. Studies have also shown that this pathway plays a role in cancer, although it has been unclear whether active JNK signaling can accelerate or protect cells from becoming cancerous. Several studies using cultured cells have suggested that JNK signaling may be important for promoting tumor cell development, while studies of tumors from human patients have indicated that JNK signaling may act to suppress tumor development.



Dr. Davis and colleagues set out to address the role of JNK signaling in tumor formation using cells from mice that have been engineered to be deficient in JNK signaling. They demonstrated that in vitro, JNK signaling does indeed play a role in transforming normal cells into those displaying the characteristics of tumor cells.

However, when they moved their experiments into a mouse model of tumor development, it was clear that JNK signaling is not required for tumor formation. In fact, the scientists actually found the opposite - that the absence of JNK signaling resulted in a dramatic increase in the number and growth of tumors when compared to control animals. This result suggests that in vivo, JNK signaling acts to suppress tumor development.


The scientists went on to examine how JNK signaling puts the brakes on tumor development and protects from disease. "The mechanism of action of JNK in tumor suppression involves the induced suicide of the defective cells that are destined to become tumor cells," explains Dr Davis. Cell suicide (or apoptosis) of unhealthy cells is a key protective mechanism against the development of cancer. In the mice studied in these experiments, loss of JNK signaling prevented apoptosis of unhealthy cells and thus promoted tumor cell survival.

Dr. Davis also comments on the implications of these findings: "Our study indicates that mutations in the JNK signaling pathway genes in human tumors may contribute to malignant cancer progression. It is likely that this information will be useful for diagnosis and for the design of appropriate treatment strategies." He points out that attempts to target anti-cancer drugs to inhibit the JNK pathway should be treated with caution, as in some cases this is likely to do more harm than good. Finally, he offers a word of caution: "Our conclusions are limited to the analysis of mice with a single type of cancer.

Further studies are required to extend our conclusions to humans and to the study of other types of cancer." Nevertheless, the work offers new insights into the cellular changes underlying some cancers and underscores the need for in vivo experiments to better understand the role of specific signaling.

Michele McDonough | EurekAlert!
Further information:
http://www.cshl.org/

More articles from Health and Medicine:

nachricht Custom-tailored strategy against glioblastomas
26.09.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New leukemia treatment offers hope
23.09.2016 | King Abdullah University of Science and Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

 
Latest News

New switch decides between genome repair and death of cells

27.09.2016 | Life Sciences

Nanotechnology for energy materials: Electrodes like leaf veins

27.09.2016 | Physics and Astronomy

‘Missing link’ found in the development of bioelectronic medicines

27.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>