Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Preventing cancer: Scientists identify a useful piece of JNK

06.03.2003


The JNK signaling pathway allows cells to respond to changes in their extracellular environment and in doing so, controls many aspects of cell function including cell proliferation, differentiation and death. Studies have also shown that this pathway plays a role in cancer, although it has been unclear whether active JNK signaling can accelerate or protect cells from becoming cancerous. Several studies using cultured cells have suggested that JNK signaling may be important for promoting tumor cell development, while studies of tumors from human patients have indicated that JNK signaling may act to suppress tumor development.



Dr. Davis and colleagues set out to address the role of JNK signaling in tumor formation using cells from mice that have been engineered to be deficient in JNK signaling. They demonstrated that in vitro, JNK signaling does indeed play a role in transforming normal cells into those displaying the characteristics of tumor cells.

However, when they moved their experiments into a mouse model of tumor development, it was clear that JNK signaling is not required for tumor formation. In fact, the scientists actually found the opposite - that the absence of JNK signaling resulted in a dramatic increase in the number and growth of tumors when compared to control animals. This result suggests that in vivo, JNK signaling acts to suppress tumor development.


The scientists went on to examine how JNK signaling puts the brakes on tumor development and protects from disease. "The mechanism of action of JNK in tumor suppression involves the induced suicide of the defective cells that are destined to become tumor cells," explains Dr Davis. Cell suicide (or apoptosis) of unhealthy cells is a key protective mechanism against the development of cancer. In the mice studied in these experiments, loss of JNK signaling prevented apoptosis of unhealthy cells and thus promoted tumor cell survival.

Dr. Davis also comments on the implications of these findings: "Our study indicates that mutations in the JNK signaling pathway genes in human tumors may contribute to malignant cancer progression. It is likely that this information will be useful for diagnosis and for the design of appropriate treatment strategies." He points out that attempts to target anti-cancer drugs to inhibit the JNK pathway should be treated with caution, as in some cases this is likely to do more harm than good. Finally, he offers a word of caution: "Our conclusions are limited to the analysis of mice with a single type of cancer.

Further studies are required to extend our conclusions to humans and to the study of other types of cancer." Nevertheless, the work offers new insights into the cellular changes underlying some cancers and underscores the need for in vivo experiments to better understand the role of specific signaling.

Michele McDonough | EurekAlert!
Further information:
http://www.cshl.org/

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>