Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Light-activated therapy and radiation combined effectively for treating tumors

03.03.2003


Dartmouth researchers report in the March 1 issue of Cancer Research they have discovered an effective combination therapy to treat tumors. In the journal, which is a publication of the American Association for Cancer Research, the researchers report that administering light-activated, or photodynamic, therapy (PDT) immediately before radiation therapy appears to kill tumors more effectively than just the sum of the two treatments.



"Our study shows that the close combination of the two treatments complement each other, allowing more effective therapy for the same delivered dose," says Brian Pogue, the lead author, an Associate Professor at Dartmouth’s Thayer School of Engineering and a Research Scientist at Harvard Medical School.

PDT is used to treat a variety of illnesses, from lung cancer to age-related blindness. The treatment uses a light-activated drug to kill tumor tissue. The drug, verteporfin in this study, is designed to accumulate within tissues with tumor-like characteristics, such as leaky vasculature and rapidly growing cells.


Pogue and his colleagues studied the effectiveness of a combined approach for administering the photodynamic therapy and subsequent radiation for treating a mouse tumor. The multidisciplinary research team is composed of faculty from Dartmouth’s Thayer School of Engineering, Dartmouth Medical School, the Norris Cotton Cancer Center at Dartmouth-Hitchcock Medical Center, and Massachusetts General Hospital.

"This finding could spark a new direction and new applications for PDT," says Pogue. "The key feature of this treatment is that the mechanism of cellular damage appears to be significantly targeted towards the cellular mitochondria, unlike radiation treatment that inflicts DNA damage."

Verteporfin is a specially designed porphyrin molecule. Porphyrins occur widely in nature, are light sensitive and play an important role in various biological processes. Heme is one notable porphyrin found in hemoglobin, and it is responsible for oxygen transport and storage in tissues. Chlorophyll is another type of porphyrin. When activated by a beam of light, porphyrins interact with oxygen in the tissues, producing a kind of oxygen, called singlet state oxygen, which is toxic to cells. This photochemical process is an efficient way to kill tissues by producing massive doses of singlet state oxygen.

Oxygen in tumors is a key component in both radiation therapy and PDT. The presence of oxygen significantly increases the ability of the therapy to induce singlet oxygen, which in turn more effectively kills the tumor tissue. "In this study, we found that verteporfin appears to increase oxygen within the tumor," says Pogue, "and this makes the subsequent radiation more effective."

Previous studies by Pogue and colleagues have shown that PDT with verteporfin targets the mitochondria (responsible for cellular respiration), but only if the verteporfin is delivered in a manner that allows distribution throughout the tumor with partial clearance from the blood vessels. This means that the drug is cleared rapidly from the blood stream by the kidneys and the liver, which is a key feature in being compatible with outpatient medical treatment. This approach of targeting the tumor tissue rather than the blood vessels was further developed in the study.

The researchers discovered that applying PDT to kill the mitochondria of the tumor cells caused a decrease in oxygen consumption, yet oxygen was still being delivered to the tumor tissue. This phenomenon resulted in an increase in available oxygen within the tumor, which improves PDT’s ability to induce singlet-state oxygen and also allows the immediately-following second therapy of radiation to be more effective. Increased oxygenation of tumors is well-known to significantly increase the radiation sensitivity of the tissue, according to Pogue.

The study was carried out in subcutaneous radiation-induced fibrosarcoma (RIF-1) tumors in mice. The tumor-killing effects were quantified by following the shrinkage of tumor volume over time after the treatments. The most effective therapy was determined by measuring the delay in the regrowth rate of the tumor, which is a standard method in cancer therapy research.

Pogue’s co-authors on this study were: Julia O’Hara, Research Associate Professor of Radiology at Dartmouth Medical School; Eugene Demidenko, Research Associate Professor at the Norris Cotton Cancer Center at Dartmouth-Hitchcock Medical Center and Adjunct Associate Professor of Mathematics at Dartmouth College; Carmen Wilmot, Radiology Laboratory Technician at Dartmouth Medical School; Isak Goodwin, a Dartmouth alum from the class of ’01 who will attend Drexel University Medical School this fall; Bin Chen; Research Associate at Dartmouth’s Thayer School of Engineering, Harold Swartz, Professor of Radiology at Dartmouth Medical School, and Tayyaba Hasan, Professor at Wellman Laboratories of Photomedicine at the Massachusetts General Hospital and Harvard Medical School.


###
This study was funded by: the National Cancer Institute through grants RO1 CA78734, PO1 CA84203 and by the Electron Paramagnetic Resonance Center for the Study of Viable Systems at Dartmouth Medical School supported by the National Center for Research Resources.


Sue Knapp | EurekAlert!
Further information:
http://www.dartmouth.edu/

More articles from Health and Medicine:

nachricht Electrical 'switch' in brain's capillary network monitors activity and controls blood flow
27.03.2017 | Larner College of Medicine at the University of Vermont

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>