Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Time to Go Beyond Cholesterol, MUHC Cardiologists Suggest

28.02.2003


There is a better way to determine risk of heart disease than measuring cholesterol, according to a new study by cardiologists from the Research Institute of the McGill University Health Centre (MUHC). This study shows that measuring the amount of a protein called apoprotein B or apoB, is a more accurate and efficient test than measuring cholesterol. These findings will be published in the March issue of the international journal, The Lancet.

ôThe tradition in clinical practice is to look at the levels and ratios of cholesterol as predictors of cardiovascular disease, ö says Dr. Allan Sniderman, MUHC cardiologist and first author of the study. ôBecause this test has its limitations we decided to look at other possibilities. This study shows that apoB is a more robust indicator of a cardiac events and we suggest that it is superior to looking just at cholesterol levels.ö

Sniderman and colleagues from Australia, British Columbia, Sweden and The Netherlands, analyzed data from epidemiological studies and clinical trials involving thousands of heart patients. Their overwhelming conclusion was that, although measuring levels of cholesterol is a good start, it is not enough. ôWhen we looked at data from patients who had their cholesterol levels lowered using medications, we found that their apoB levels were still high. This suggests that these patients are still at risk of having a heart attack. This is a concern because according to the cholesterol results, the patient was adequately treated,ö says Dr. Sniderman.

Because apoproteins can be accurately and inexpensively measured in routine clinical laboratories, we suggest that this measurement should be brought into clinical practice. In addition, this test is considerably more convenient to the patients because fasting is not required, ô concludes Dr. Sniderman.

Apoproteins are specialized transport proteins that carry lipids, or fats in the blood. Most of the cholesterol in blood is present in low-density lipoprotein (LDL) particles. Each LDL particle contains one molecule of apoB, which surrounds and stabilizes it. LDL particles differ in size depending on how much cholesterol they contain. The smaller LDL particles have less cholesterol, but are associated the most with coronary artery disease and are more dangerous to have circulating in the blood than the larger LDL molecules that contain more cholesterol. An increased number of LDL particles in the blood will lead to a greater risk of heart attacks or strokes. Lowering LDL particle number is the most powerful method now available to lowering the risk of heart attacks.



For more information, please contact:
Christine Zeindler, MSc
Communications Coordinator (Research)
McGill University Health Centre Communications Services


(514) 934-1934 ext. 36419
pager: (514) 406-1577

Christine Zeindler | MUHC Communications

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>