Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Time to Go Beyond Cholesterol, MUHC Cardiologists Suggest

28.02.2003


There is a better way to determine risk of heart disease than measuring cholesterol, according to a new study by cardiologists from the Research Institute of the McGill University Health Centre (MUHC). This study shows that measuring the amount of a protein called apoprotein B or apoB, is a more accurate and efficient test than measuring cholesterol. These findings will be published in the March issue of the international journal, The Lancet.

ôThe tradition in clinical practice is to look at the levels and ratios of cholesterol as predictors of cardiovascular disease, ö says Dr. Allan Sniderman, MUHC cardiologist and first author of the study. ôBecause this test has its limitations we decided to look at other possibilities. This study shows that apoB is a more robust indicator of a cardiac events and we suggest that it is superior to looking just at cholesterol levels.ö

Sniderman and colleagues from Australia, British Columbia, Sweden and The Netherlands, analyzed data from epidemiological studies and clinical trials involving thousands of heart patients. Their overwhelming conclusion was that, although measuring levels of cholesterol is a good start, it is not enough. ôWhen we looked at data from patients who had their cholesterol levels lowered using medications, we found that their apoB levels were still high. This suggests that these patients are still at risk of having a heart attack. This is a concern because according to the cholesterol results, the patient was adequately treated,ö says Dr. Sniderman.

Because apoproteins can be accurately and inexpensively measured in routine clinical laboratories, we suggest that this measurement should be brought into clinical practice. In addition, this test is considerably more convenient to the patients because fasting is not required, ô concludes Dr. Sniderman.

Apoproteins are specialized transport proteins that carry lipids, or fats in the blood. Most of the cholesterol in blood is present in low-density lipoprotein (LDL) particles. Each LDL particle contains one molecule of apoB, which surrounds and stabilizes it. LDL particles differ in size depending on how much cholesterol they contain. The smaller LDL particles have less cholesterol, but are associated the most with coronary artery disease and are more dangerous to have circulating in the blood than the larger LDL molecules that contain more cholesterol. An increased number of LDL particles in the blood will lead to a greater risk of heart attacks or strokes. Lowering LDL particle number is the most powerful method now available to lowering the risk of heart attacks.



For more information, please contact:
Christine Zeindler, MSc
Communications Coordinator (Research)
McGill University Health Centre Communications Services


(514) 934-1934 ext. 36419
pager: (514) 406-1577

Christine Zeindler | MUHC Communications

More articles from Health and Medicine:

nachricht Correct connections are crucial
26.06.2017 | Charité - Universitätsmedizin Berlin

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>