Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study may help explain sunlight’s role in melanoma development, have screening implications

24.02.2003


A strong link exists between lifetime exposure to ultraviolet light, particularly lifetime sunburns, and the development of melanoma - the most lethal form of skin cancer.

Now, for the first time, scientists have identified a specific molecular pathway within cells that becomes mutated by ultraviolet light exposure, thereby speeding up melanoma development.

New findings published in the Feb. 4 issue of Proceedings of the National Academy of Sciences may have implications for screening people at high risk, including those "with a significant history of sunburn and suspicious skin moles," said study co-author, Dr. Norman Sharpless, assistant professor of medicine and genetics at the University of North Carolina at Chapel Hill School of Medicine and a member of UNC’s Lineberger Comprehensive Cancer Center.



"Who hasn’t been sunburned?" he said. "This work suggests a rational method for risk stratification, for screening questionable skin moles - atypical nevi - for specific molecular lesions."

In the new study, Sharpless and colleagues at Harvard Medical School used mice deficient in an important tumor suppressor protein connected to the "anti-cancer" cell signaling pathway ARF-p53. In addition to this deficiency, these mice were genetically designed to produce another protein, H-Ras, in their pigmented skin cells, or melanocytes.

"Loss of ARF-p53 and activation of Ras are two of three hallmark events detected in human melanomas. The third being loss in another ’anti-cancer’ cell signaling pathway, p16INK4a-Rb," said Sharpless.

This mouse model allowed researchers to selectively test the effects of ultraviolet light exposure on the p16INK4a-Rb pathway.

The Rb pathway regulates cell growth. The retinoblastoma protein acts to hold cell proliferation in check. The regulatory capacity of Rb is moderated by CDK6 and the tumor suppressor protein, p16INK4a.

In this work, the authors showed that ultraviolet light exposure accelerated melanoma formation on the treated mice compared with melanomas arising spontaneously in the absence of such exposure. The researchers found targeting of the Rb pathway, either by an increase in CDK6 expression or a loss of p16INK4a, in the melanomas that developed on mice treated with a single exposure of ultraviolet light - essentially, a mouse sunburn. In mice genetically engineered to lack p16INK4a, however, ultraviolet light exposure did not increase melanoma formation.

"These data suggest that it is not so much this gene or that gene, but the pathway that is what UV light targets," Sharpless said.

"This is one of the better mouse models for any human tumor that I’m aware of," he added. "This finding is unique in that it identifies the Rb pathway as a target of UV’s mutagenic action."

The next research step is to look at a collection of clinical samples to determine if exclusive lesions in the Rb pathway are linked to melanomas from patients with a detailed history of ultraviolet light exposure.

"Melanoma screening is a good idea, but it needs some molecular help to distinguish the really high-risk patients from those at a lower risk for developing melanoma," Sharpless said. "This would be a way to deal with this very large clinically heterogeneous population of patients at risk."



The Howard Hughes Medical Institute and the National Institutes of Health provided funding for the research.

By Kerilyn R. Wick
UNC School of Medicine

Note: Contact Sharpless at (919) 966-1185 or nes@med.unc.edu.
School of Medicine contact: Les Lang, (919) 843-9687 or llang@med.unc.edu

Leslie Lang | EurekAlert!
Further information:
http://www.med.unc.edu/

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>