Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study may help explain sunlight’s role in melanoma development, have screening implications

24.02.2003


A strong link exists between lifetime exposure to ultraviolet light, particularly lifetime sunburns, and the development of melanoma - the most lethal form of skin cancer.

Now, for the first time, scientists have identified a specific molecular pathway within cells that becomes mutated by ultraviolet light exposure, thereby speeding up melanoma development.

New findings published in the Feb. 4 issue of Proceedings of the National Academy of Sciences may have implications for screening people at high risk, including those "with a significant history of sunburn and suspicious skin moles," said study co-author, Dr. Norman Sharpless, assistant professor of medicine and genetics at the University of North Carolina at Chapel Hill School of Medicine and a member of UNC’s Lineberger Comprehensive Cancer Center.



"Who hasn’t been sunburned?" he said. "This work suggests a rational method for risk stratification, for screening questionable skin moles - atypical nevi - for specific molecular lesions."

In the new study, Sharpless and colleagues at Harvard Medical School used mice deficient in an important tumor suppressor protein connected to the "anti-cancer" cell signaling pathway ARF-p53. In addition to this deficiency, these mice were genetically designed to produce another protein, H-Ras, in their pigmented skin cells, or melanocytes.

"Loss of ARF-p53 and activation of Ras are two of three hallmark events detected in human melanomas. The third being loss in another ’anti-cancer’ cell signaling pathway, p16INK4a-Rb," said Sharpless.

This mouse model allowed researchers to selectively test the effects of ultraviolet light exposure on the p16INK4a-Rb pathway.

The Rb pathway regulates cell growth. The retinoblastoma protein acts to hold cell proliferation in check. The regulatory capacity of Rb is moderated by CDK6 and the tumor suppressor protein, p16INK4a.

In this work, the authors showed that ultraviolet light exposure accelerated melanoma formation on the treated mice compared with melanomas arising spontaneously in the absence of such exposure. The researchers found targeting of the Rb pathway, either by an increase in CDK6 expression or a loss of p16INK4a, in the melanomas that developed on mice treated with a single exposure of ultraviolet light - essentially, a mouse sunburn. In mice genetically engineered to lack p16INK4a, however, ultraviolet light exposure did not increase melanoma formation.

"These data suggest that it is not so much this gene or that gene, but the pathway that is what UV light targets," Sharpless said.

"This is one of the better mouse models for any human tumor that I’m aware of," he added. "This finding is unique in that it identifies the Rb pathway as a target of UV’s mutagenic action."

The next research step is to look at a collection of clinical samples to determine if exclusive lesions in the Rb pathway are linked to melanomas from patients with a detailed history of ultraviolet light exposure.

"Melanoma screening is a good idea, but it needs some molecular help to distinguish the really high-risk patients from those at a lower risk for developing melanoma," Sharpless said. "This would be a way to deal with this very large clinically heterogeneous population of patients at risk."



The Howard Hughes Medical Institute and the National Institutes of Health provided funding for the research.

By Kerilyn R. Wick
UNC School of Medicine

Note: Contact Sharpless at (919) 966-1185 or nes@med.unc.edu.
School of Medicine contact: Les Lang, (919) 843-9687 or llang@med.unc.edu

Leslie Lang | EurekAlert!
Further information:
http://www.med.unc.edu/

More articles from Health and Medicine:

nachricht World first: Massive thrombosis removed during early pregnancy
20.07.2017 | Universitätsspital Bern

nachricht Therapy of preterm birth in sight?
19.07.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

Leipzig HTP-Forum discusses "hydrothermal processes" as a key technology for a biobased economy

12.07.2017 | Event News

 
Latest News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

Researchers create new technique for manipulating polarization of terahertz radiation

20.07.2017 | Information Technology

High-tech sensing illuminates concrete stress testing

20.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>