Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study may help explain sunlight’s role in melanoma development, have screening implications

24.02.2003


A strong link exists between lifetime exposure to ultraviolet light, particularly lifetime sunburns, and the development of melanoma - the most lethal form of skin cancer.

Now, for the first time, scientists have identified a specific molecular pathway within cells that becomes mutated by ultraviolet light exposure, thereby speeding up melanoma development.

New findings published in the Feb. 4 issue of Proceedings of the National Academy of Sciences may have implications for screening people at high risk, including those "with a significant history of sunburn and suspicious skin moles," said study co-author, Dr. Norman Sharpless, assistant professor of medicine and genetics at the University of North Carolina at Chapel Hill School of Medicine and a member of UNC’s Lineberger Comprehensive Cancer Center.



"Who hasn’t been sunburned?" he said. "This work suggests a rational method for risk stratification, for screening questionable skin moles - atypical nevi - for specific molecular lesions."

In the new study, Sharpless and colleagues at Harvard Medical School used mice deficient in an important tumor suppressor protein connected to the "anti-cancer" cell signaling pathway ARF-p53. In addition to this deficiency, these mice were genetically designed to produce another protein, H-Ras, in their pigmented skin cells, or melanocytes.

"Loss of ARF-p53 and activation of Ras are two of three hallmark events detected in human melanomas. The third being loss in another ’anti-cancer’ cell signaling pathway, p16INK4a-Rb," said Sharpless.

This mouse model allowed researchers to selectively test the effects of ultraviolet light exposure on the p16INK4a-Rb pathway.

The Rb pathway regulates cell growth. The retinoblastoma protein acts to hold cell proliferation in check. The regulatory capacity of Rb is moderated by CDK6 and the tumor suppressor protein, p16INK4a.

In this work, the authors showed that ultraviolet light exposure accelerated melanoma formation on the treated mice compared with melanomas arising spontaneously in the absence of such exposure. The researchers found targeting of the Rb pathway, either by an increase in CDK6 expression or a loss of p16INK4a, in the melanomas that developed on mice treated with a single exposure of ultraviolet light - essentially, a mouse sunburn. In mice genetically engineered to lack p16INK4a, however, ultraviolet light exposure did not increase melanoma formation.

"These data suggest that it is not so much this gene or that gene, but the pathway that is what UV light targets," Sharpless said.

"This is one of the better mouse models for any human tumor that I’m aware of," he added. "This finding is unique in that it identifies the Rb pathway as a target of UV’s mutagenic action."

The next research step is to look at a collection of clinical samples to determine if exclusive lesions in the Rb pathway are linked to melanomas from patients with a detailed history of ultraviolet light exposure.

"Melanoma screening is a good idea, but it needs some molecular help to distinguish the really high-risk patients from those at a lower risk for developing melanoma," Sharpless said. "This would be a way to deal with this very large clinically heterogeneous population of patients at risk."



The Howard Hughes Medical Institute and the National Institutes of Health provided funding for the research.

By Kerilyn R. Wick
UNC School of Medicine

Note: Contact Sharpless at (919) 966-1185 or nes@med.unc.edu.
School of Medicine contact: Les Lang, (919) 843-9687 or llang@med.unc.edu

Leslie Lang | EurekAlert!
Further information:
http://www.med.unc.edu/

More articles from Health and Medicine:

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>