Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study may help explain sunlight’s role in melanoma development, have screening implications

24.02.2003


A strong link exists between lifetime exposure to ultraviolet light, particularly lifetime sunburns, and the development of melanoma - the most lethal form of skin cancer.

Now, for the first time, scientists have identified a specific molecular pathway within cells that becomes mutated by ultraviolet light exposure, thereby speeding up melanoma development.

New findings published in the Feb. 4 issue of Proceedings of the National Academy of Sciences may have implications for screening people at high risk, including those "with a significant history of sunburn and suspicious skin moles," said study co-author, Dr. Norman Sharpless, assistant professor of medicine and genetics at the University of North Carolina at Chapel Hill School of Medicine and a member of UNC’s Lineberger Comprehensive Cancer Center.



"Who hasn’t been sunburned?" he said. "This work suggests a rational method for risk stratification, for screening questionable skin moles - atypical nevi - for specific molecular lesions."

In the new study, Sharpless and colleagues at Harvard Medical School used mice deficient in an important tumor suppressor protein connected to the "anti-cancer" cell signaling pathway ARF-p53. In addition to this deficiency, these mice were genetically designed to produce another protein, H-Ras, in their pigmented skin cells, or melanocytes.

"Loss of ARF-p53 and activation of Ras are two of three hallmark events detected in human melanomas. The third being loss in another ’anti-cancer’ cell signaling pathway, p16INK4a-Rb," said Sharpless.

This mouse model allowed researchers to selectively test the effects of ultraviolet light exposure on the p16INK4a-Rb pathway.

The Rb pathway regulates cell growth. The retinoblastoma protein acts to hold cell proliferation in check. The regulatory capacity of Rb is moderated by CDK6 and the tumor suppressor protein, p16INK4a.

In this work, the authors showed that ultraviolet light exposure accelerated melanoma formation on the treated mice compared with melanomas arising spontaneously in the absence of such exposure. The researchers found targeting of the Rb pathway, either by an increase in CDK6 expression or a loss of p16INK4a, in the melanomas that developed on mice treated with a single exposure of ultraviolet light - essentially, a mouse sunburn. In mice genetically engineered to lack p16INK4a, however, ultraviolet light exposure did not increase melanoma formation.

"These data suggest that it is not so much this gene or that gene, but the pathway that is what UV light targets," Sharpless said.

"This is one of the better mouse models for any human tumor that I’m aware of," he added. "This finding is unique in that it identifies the Rb pathway as a target of UV’s mutagenic action."

The next research step is to look at a collection of clinical samples to determine if exclusive lesions in the Rb pathway are linked to melanomas from patients with a detailed history of ultraviolet light exposure.

"Melanoma screening is a good idea, but it needs some molecular help to distinguish the really high-risk patients from those at a lower risk for developing melanoma," Sharpless said. "This would be a way to deal with this very large clinically heterogeneous population of patients at risk."



The Howard Hughes Medical Institute and the National Institutes of Health provided funding for the research.

By Kerilyn R. Wick
UNC School of Medicine

Note: Contact Sharpless at (919) 966-1185 or nes@med.unc.edu.
School of Medicine contact: Les Lang, (919) 843-9687 or llang@med.unc.edu

Leslie Lang | EurekAlert!
Further information:
http://www.med.unc.edu/

More articles from Health and Medicine:

nachricht TSRI researchers develop new method to 'fingerprint' HIV
29.03.2017 | Scripps Research Institute

nachricht Periodic ventilation keeps more pollen out than tilted-open windows
29.03.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>