Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find promising drug for preventing serious complications of diabetes

17.02.2003


Results reported in Nature Medicine



Opening up the possibility of a new approach to the treatment of diabetes, researchers have shown in animal studies that a drug long available in Europe can simultaneously block three of the major biochemical pathways responsible for the blood-vessel damage that causes serious diabetic complications.

Dr. Michael Brownlee of the Albert Einstein College of Medicine was the senior researcher for the international consortium that carried out the study, which appears in the current issue of Nature Medicine.


Research over the past 30 years has identified four biochemical pathways by which diabetes injures blood vessels - damage that makes diabetes the leading cause of blindness, kidney failure, heart attacks and nontraumatic amputation of legs in the U.S. In this study, from the Einstein Diabetes Research Center, the drug benfotiamine completely blocked three of those pathways when tested in diabetic rats, animals often used as models for studying the disease. Benfotiamine is a synthetic derivative of thiamine (vitamin B1) and has been available for more than a decade in Germany. It is prescribed there for treating diabetic neuropathy, sciatica and other painful nerve conditions but has never been tested in placebo-controlled, double-blind clinical trials.

In people with diabetes, all cells are bathed in blood that contains elevated levels of glucose. Most cells still manage to keep their internal glucose at normal levels. But certain cells - particularly endothelial cells that line arteries and the capillaries of the retina and kidney - are unable to regulate glucose and instead develop high internal levels of the sugar, which they can’t completely metabolize. As a result, glucose-derived "intermediate" metabolic products accumulate inside these cells, where they activate pathways of cellular damage that can eventually lead to blindness and other complications.

Dr. Brownlee and his colleagues focused on two glucose-derived intermediates that activate three of the damaging biochemical pathways. They knew that both of these metabolic compounds (fructose-6-phosphate and glyceraldehyde-3-phosphate) are the end products of another biochemical pathway mediated by an enzyme called transketolase.

By boosting transketolase’s activity, the researchers reasoned, they might be able to reverse this pathway - essentially converting the two damage-triggering glucose metabolites into harmless chemicals and preventing all three damaging biochemical pathways from being activated. They also knew that transketolase, like many enzymes, depends on a cofactor for its activity - in this case thiamine.

In preliminary studies involving arterial endothelial cells, adding standard thiamine boosted transketolase’s activity by only 20 percent, so the researchers looked around for a more potent form of thiamine. Dr. Brownlee’s German colleagues suggested benfotiamine, a fat-soluble thiamine derivative.

"By pure serendipity, it turned out that benfotiamine boosted the activity of the enzyme transketolase by 300 to 400 percent - something we never could have predicted based on benfotiamine’s chemical structure," says Dr. Brownlee, who is professor of medicine and of pathology, and the Anita and Jack Saltz Professor of Diabetes Research at Einstein.

As reported in the Nature Medicine paper, benfotiamine successfully blocked all three major destructive biochemical pathways in experiments with arterial endothelial cells. Next, the researchers treated diabetic rats with benfotiamine and then examined their retinal tissue. (For comparison, they also examined the retinas of control diabetic rats and normal rats.)

Chemical analysis showed that all three biochemical pathways had been "normalized" in the benfotiamine-treated diabetic rats so that their retinas were biochemically identical to the retinas of normal rats. The drug also prevented diabetic retinopathy in the animals, since microscopic examination revealed that the retinas of benfotiamine-treated diabetic rats were free of vascular damage.

No drug for preventing the complications of diabetes is currently available. Dr. Brownlee is applying to the U.S. Food and Drug Administration to test benfotiamine as an Investigational New Drug. Noting that drugs that produce impressive results in animals do not always work in humans, Dr. Brownlee says he is reasonably confident that benfotiamine will at least prove to be safe: "Benfotiamine has been used extensively in Germany for many years, and to my knowledge there are no reported side effects."

Dr. Brownlee cautions people with diabetes against taking thiamine supplements, however, noting that there is no evidence that thiamine can activate transketolase sufficiently to prevent complications of diabetes.


In addition to Dr. Brownlee and his Einstein colleagues, authors of the Nature Medicine paper included scientists from Germany, Italy, China and Japan. The research was supported by grants from the National Institute of Diabetes and Digestive and Kidney Diseases, the American Diabetes Association and the Juvenile Diabetes Research Foundation.




Karen Gardner | EurekAlert!
Further information:
http://www.aecom.yu.edu/

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Innovative LED High Power Light Source for UV

22.06.2017 | Physics and Astronomy

Mathematical confirmation: Rewiring financial networks reduces systemic risk

22.06.2017 | Business and Finance

Spin liquids − back to the roots

22.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>