Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stanford researchers study how gene level variations in blood affect immunity

13.02.2003


Differences in people seem to run in the blood, according to a recent study that examines which genes are active in blood cells. The work, published in this week’s online issue of the Proceedings of the National Academy of Sciences, found that the levels of several genes used by blood cells vary from person to person.



"Nobody had taken this broad a look at genetic variation in the blood of healthy people," said David Relman, MD, associate professor of medicine at Stanford and a co-author of the study.

People vary greatly in their reactions to bacteria and viruses; some individuals fall prey to every bug that comes along while others go through winter sniffle-free. Relman, along with Patrick Brown, PhD, professor of biochemistry, and research assistant Adeline Whitney thought these differences might show up when looking at which genes are active in circulating blood cells.


To find out the extent and nature of the differences in gene activity in people’s blood, Relman and his colleagues drew blood from 75 healthy people and extracted a molecule called RNA. RNA is produced by active genes and can be used to identify which genes are being expressed in a given sample. They then attached a fluorescent molecule to the RNA and applied the samples to a gene chip - a glass slide dotted with human genes. If a sample contained RNA corresponding to a gene on the chip, the fluorescently labeled RNA would bind to the spot and produce a visible signal. The bigger the signal, the more RNA was present, and therefore the greater the gene expression. Whitney then compared which spots varied in brightness among the samples.

The blood used in this analysis contained a variety of cells, including red blood cells that carry oxygen to the tissues and immune cells that fight disease. The red blood cells don’t contain nuclei and therefore don’t produce RNA. That leaves immune cells as the only cells making RNA in the blood sample. Any differences found in the pattern of active genes resulted from these disease-fighting cells.

A few genes stood out as being used at varying levels in different people. Some of these could be used to distinguish between men and women. For example, women use different levels of genes whose proteins respond to an immune protein called interferon. Researchers had suspected that genes in the interferon pathway might have a role in the higher risk of autoimmune diseases among women.

The researchers also found variations in two genes that weren’t previously documented as being active in blood cells. One is a gene that makes the prion protein - the protein altered in people who have Creutzfeldt-Jakob disease. Another surprisingly variable gene was BRCA1, which is mutated in an inherited form of breast cancer. It could turn out that levels of the prion protein or BRCA1 in the blood play some role in determining the risk for prion-related diseases or cancer.

In addition to the variation of gene expression among different people, the researchers found genes that varied according to the time of day that blood was drawn. Other genes were used at higher or lower levels depending upon the age of the blood donor - a finding that could eventually help doctors understand why older people are more prone to some illnesses.

Relman pointed out that it’s too early to know why people use genes at higher or lower levels in blood cells, and the consequences of this variability. "It may be that some people confronted a virus or had a cold the week before, or had different environmental experiences," he said.

He added that despite the differences, there was remarkable similarity in the genes used in the blood cells among the study subjects. "It was surprising that the degree of variability was as small as it turns out to be," he said. This finding bodes well for using gene expression in blood to distinguish between healthy people and those with an infectious disease. Because people are usually quite similar, any disease-related variation should stand out.


Other Stanford researchers who contributed to the paper include MD/PhD students Maximillian Diehn, PhD, and Ash Alizadeh, PhD; postdoctoral fellow Stephen Popper, DSc; and medical student Jennifer Boldrick.

Stanford University Medical Center integrates research, medical education and patient care at its three institutions - Stanford University School of Medicine, Stanford Hospital & Clinics and Lucile Packard Children’s Hospital at Stanford. For more information, please visit the Web site of the medical center’s Office of Communication & Public Affairs at http://mednews.stanford.edu.

PRINT MEDIA CONTACTS: Amy Adams at (650) 723-3900 (amyadams@stanford.edu)
BROADCAST MEDIA CONTACT: Neale Mulligan at (650) 724-2454 (nealem@stanford.edu)

Neale Mulligan | EurekAlert!
Further information:
http://med-www.stanford.edu/MedCenter/MedSchool/

More articles from Health and Medicine:

nachricht Custom-tailored strategy against glioblastomas
26.09.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New leukemia treatment offers hope
23.09.2016 | King Abdullah University of Science and Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

 
Latest News

New Multiferroic Materials from Building Blocks

29.09.2016 | Materials Sciences

Silicon Fluorescent Material Developed Enabling Observations under a Bright “Biological Optical Window”

29.09.2016 | Materials Sciences

X-shape Bio-inspired Structures

29.09.2016 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>