Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jefferson scientists find calcium is key to slowing colorectal cancer growth

11.02.2003


Allowing calcium to get inside colorectal cancer cells may be one way to stop their growth.

Researchers at Jefferson Medical College and the Kimmel Cancer Center at Thomas Jefferson University in Philadelphia knew that the same bacterial toxin that causes traveler’s diarrhea can stem the growth of metastatic colorectal cancer cells. Now, they may have found out how.

The scientists discovered that the toxin appears to open a cellular door, permitting calcium into tumor cells, which in turn somehow slows cell division. The discovery may lead to new methods of treating colorectal cancer, perhaps by combining the toxin with chemotherapy drugs and other agents.



GianMario Pitari, M.D., Ph.D., assistant professor of medicine at Jefferson Medical College of Thomas Jefferson University, Scott Waldman, M.D., Ph.D., Samuel M.V. Hamilton Family Professor of Medicine and director of the Division of Clinical Pharmacology at Jefferson Medical College, and their co-workers report their findings February 10 in the Proceedings of the National Academy of Sciences Online Edition.

Drs. Waldman and Pitari had previously shown that when the toxin, known as ST, hooks up with a receptor, GCC, on the surface of metastatic colorectal cancer cells, metastatic colorectal cancer cell growth slows considerably. Treating the cells with ST didn’t kill them, but rather lengthened the time of the cell growth cycle, slowing the cells’ growth and spread. The current research takes this work one step further, providing one potential mechanism for this growth inhibition.

"Dietary calcium is the mediator of this antiproliferative effect," says Dr. Pitari, who adds that dietary calcium has been believed to have a role in preventing the formation of polyps and cancer in the colon. "Now, we show that one of the mechanisms by which dietary calcium works is through this pathway. The toxin activates the receptor, GCC, causing an opening of a channel and an influx of calcium into the tumor cell. This influx causes a reduction of cancer cell growth. Somehow there is an interaction between the toxin and dietary calcium in blocking the growth of the tumor.

"The mechanism by which this occurs is very specific and a completely new pathway," he says. "No one has linked this pathway to antiproliferation and inhibition of tumor DNA synthesis," he notes.

In the laboratory, Drs. Pitari, Waldman and their co-workers, including internationally renowned electrophysiologist Andre Terzic, M.D., Ph.D. at the Mayo Clinic in Rochester, Minn., discovered that when ST binds to GCC on the cancer cell surface, a molecule called cyclic GMP is produced. Cyclic GMP, in turn, opens up a calcium channel in the cancer cell, permitting calcium to flow in. The calcium then imparts a signal that slows cancer cell division.

Drs. Pitari and Waldman see several implications from these results. "We think you can use the toxin as an intravenous infusion to treat cancer metastases," says Dr. Pitari. "The toxin will not cross the intestinal lumen, meaning there won’t be the side effects of diarrhea. In this case, you could have only the therapeutic effects of the toxin on a metastatic tumor. We think it could be one way to treat patients who had surgery on the primary tumor, to prevent the formation of metastases or to even treat metastases."

Dr. Waldman explains that when the toxin hooks up with the GCC receptor, it causes two events in the intestine: diarrhea and cell growth inhibition, each through a different pathway. One pathway leads to secretion of water and electrolytes. The other leads to calcium entering the cancer cell and blocking DNA synthesis. "We propose blocking the pathway leading to diarrhea and leaving only the positive effect," says Dr. Pitari. "This might provide a great opportunity to treat the cancer locally. It might also work synergistically with other anticancer drugs."

Next, says Dr. Waldman, the scientists plan to create human colorectal cancer models in so-called nude mice, animals without immune systems, to see if ST can inhibit the growth of tumors in animals.

The technology involved in the research has been licensed from Thomas Jefferson University to Targeted Diagnostics and Therapeutics, Inc. (TDT), based in Exton, Pa. TDT has licensed the rights for the development of therapeutics from the work to Millennium Pharmaceuticals, Inc. in Boston.


###
Contact: Steve Benowitz or Phyllis Fisher
215-955-6300
After Hours: 215-955-6060
E-Mail: steven.benowitz@mail.tju.edu


Steve Benowitz | EurekAlert!
Further information:
http://www.tju.edu/

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>