Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Host gene that makes people vulnerable to leprosy discovered

10.02.2003


An international research team, led by Dr. Erwin Schurr and Dr. Thomas Hudson, Scientists at the Research Institute of the McGill University Health Centre, have identified a gene on human chromosome 6 that makes people vulnerable to leprosy. The study will be published in the March 2003 issue of Nature Genetics.



"This discovery will now allow us to study how the gene works and how it influences the infectious process. This is an important step toward the development of innovative prevention and treatment strategies for leprosy", stated Dr. Schurr.

"Leprosy has plagued humans for many centuries and it continues to be a concern in many countries," stated Dr. Marcel Behr, Infectious Disease Specialist at the MUHC and Assistant Professor of Medicine at McGill University. "These studies lead the way to developing better treatment and a possible vaccine."


Leprosy, a chronic disease caused by infection with the bacteria Mycobacterium leprae, affects approximately one million people worldwide. While it is a rare disease in Canada and the United States, the World Health Organization has identified 91 countries in which leprosy infection is highly prevalent. Symptoms of leprosy include pigmented skin lesions, permanent nerve damage leading to numbness of the feet and hands and, if left untreated, the disease may result in gross disfiguration including loss of finger, toes, feet and hands. The leprosy bacteria are transmitted through direct personal contact or contaminated respiratory droplets.

Schurr and his colleagues used a technique called "genome scanning" to map the gene. The research team analyzed DNA samples from nearly 100 families who were susceptible to the disease, and found that the families shared a common gene variant on chromosome 6. They then analyzed the DNA of an additional 200 families with leprosy to confirm their findings. "In the last few years advances in technology have made complex genetic analyses, such as those used in this study, possible, "stated Dr. Thomas Hudson. "Without these advances and the cooperation of the families, this research would not have been possible."

This is the second study, published in 2003 by McGill/CGDN scientists, that illustrates the importance of host genes in infectious disease. Dr. Philippe Gros discovered a gene (Naip-5) could make mice resistant to Legionnaire’s Disease. "We are now looking forward to applying the same gene identification strategies for other common infectious diseases such as tuberculosis and malaria", stated Dr. Alexandre Alcaïs, a scientist at the Institut National de la Santé et de la Recherche Médical (INSERM) Unité 550 at Necker Medical School, Paris, and co-author of the study.

Dr. Erwin Schurr is a Scientist at the McGill Centre for the Study of Host Resistance, a Researcher at the McGill University Health Centre, and an Investigator of the Canadian Genetic Diseases Network. Dr. Thomas Hudson is Director of the Genome Quebec Innovation Centre, a Scientist at the McGill University Health Centre, and an Investigator of the Canadian Genetic Diseases Network. The research was supported with grants from the Canadian Genetic Diseases Network, Canadian Institutes of Health Research, and Genome Quebec.

The Canadian Genetic Diseases Network is a not-for-profit corporation, committed to advancing Canada’s scientific and commercial competitiveness in genetic research, and the application of genetic discoveries to prevent, diagnose, and treat human disease. To achieve its objectives, CGDN participates in three essential activities: facilitates and funds collaborative research in human genetics across Canada; educates emerging scientists to excel in human genetic disease research; and facilitates partnerships between industry and academia to translate research discoveries into innovative therapies or diagnostic tests. CGDN is part of the Canadian Network Centres of Excellence program.

For Information contact:
Canadian Genetic Diseases Network:
Dean Sas, Corporate Development and Communications Manager
TEL: 604-221-7300 ext. 110
dsas@cgdn.ca

MUHC Communications Services:
Christine Zeindler
Communications Coordinator (Research)
514-934-1934 ext. 36419
pager: 514-406-1577


Christine Zeindler | EurekAlert!
Further information:
http://www.mcgill.ca/

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>