Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fighting fire with fire? Vaccine based on chimp virus shows promise against HIV

04.02.2003


In a new study in mice, a modified form of an innocuous chimpanzee virus has shown marked potency as a protective vaccine against HIV, itself believed to have crossed into the human population from chimpanzees sometime in the 1930s. The study, led by researchers at The Wistar Institute, appears in the February issue of the Journal of Immunology.



"Our results show this new vaccine is capable of inducing the kind of powerful immune response that we and others believe will be critical for controlling HIV infection," says Hildegund C.J. Ertl, M.D., professor and immunology program leader at The Wistar Institute, and senior author on the new study.

Given the history of HIV, Ertl emphasize the lengths to which she and her colleagues have gone to ensure that the new vaccine is completely safe. To eliminate the possibility of any contaminant - an HIV-like stowaway, for example - the vaccine is derived in the laboratory from a set of genetic instructions. Importantly, too, the genes that would be needed by the viral vaccine to replicate are deleted from those instructions.


The vaccine is based on a chimpanzee adenovirus. In chimpanzees and humans, adenoviruses are a common cause of respiratory-tract infections. Immunologists have understood for some time that human adenoviruses can be retooled in the laboratory to serve as the basis for vaccines against an array of viral diseases. They easily enter human cells and stimulate a vigorous, long-lasting immune response. A number of vaccines based on human adenoviruses, including some against HIV, are now in development.

An unaddressed concern with these vaccines, however, is the question of pre-existing immunity. Adenoviruses are nearly ubiquitous among humans, so much so that more than 45 percent of the population has neutralizing antibodies circulating in the blood able to impair any vaccine based on a common human adenovirus. But the new chimpanzee adenovirus vaccine possesses the immunological strengths of a human adenovirus vaccine without the drawback of pre-existing immunity in its target population.

Because HIV infects only humans and chimpanzees, the current study used a sophisticated mouse model to test the new vaccine. For this model, the researchers first incorporated an internal HIV protein known as gag into the modified chimpanzee adenovirus vaccine. They also engineered a matching vaccine that incorporated gag into the human adenovirus. They then used a variant of the vaccinia virus, which can infect mice, that included the gag protein. For comparison, some mice were exposed to the human adenovirus, so that they would demonstrate the pre-existing immunity to the virus seen in many humans.

After vaccination with the chimpanzee adenovirus vaccine, the mice mounted a powerful T-cell-based immune response and were able to fight off experimental infection by the vaccinia virus containing gag, the HIV protein. The mice pre-exposed to the human adenovirus and vaccinated with the human adenovirus vaccine, however, demonstrated significantly weaker immune responses to the vaccinia virus.

"It’s hard to say that because the vaccine works well in a mouse model, it will protect humans from HIV infection," Ertl cautions. "But we do know that the kind of immune response we saw in mice can protect non-human primates infected with SIV from developing disease." SIV, or simian immunodeficiency virus, is the chimpanzee counterpart to HIV, or human immunodeficiency virus.

In addition to moving forward with testing of the chimpanzee adenovirus vaccine against HIV, Ertl and her colleagues are developing similar vaccines against rabies, smallpox, and a number of other viruses.

Julie C. Fitzgerald, a graduate student in senior author Ertl’s laboratory, is lead author on the Journal of Immunology study. The other Wistar-based authors are Zhi Q. Xiang, Anthony P. Wlazlo, and Wynetta Giles-Davis. Arturo Reyes-Sandoval is affiliated with Wistar and the Instituto Politecnico Nacional in Mexico City. George N. Pavlakis is with the National Cancer Institute. Guang-Ping Gao and James M. Wilson are with the University of Pennsylvania. The techniques used to create the vaccine were developed under the guidance of Wilson and his colleagues.


Funding for the research was provided by the National Institutes of Health, the W.W. Smith Foundation, and Genovo. Wilson owns equity in Targeted Genetics, formerly Genovo.

The Wistar Institute is an independent nonprofit biomedical research institution dedicated to discovering the causes and cures for major diseases, including cancer, cardiovascular disease, autoimmune disorders, and infectious diseases. Founded in 1892 as the first institution of its kind in the nation, The Wistar Institute today is a National Cancer Institute-designated Cancer Center - one of only eight focused on basic research. Discoveries at Wistar have led to the development of vaccines for such diseases as rabies and rubella, the identification of genes associated with breast, lung, and prostate cancer, and the development of monoclonal antibodies and other significant research technologies and tools.

Franklin Hoke | EurekAlert!
Further information:
http://www.wistar.upenn.edu

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>