Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fox Chase Cancer Center researchers make significant discovery about function of p53

03.02.2003


Cancer researchers have known that the tumor-suppressor gene p53 is critical in preventing cells from dividing inappropriately and becoming tumors. But now, researchers at Fox Chase Cancer Center have established that the ability of the p53 gene to perform its job depends on the type of p53 within each cell. This and another new finding about p53, published in Nature Genetics (Feb. 3, 2003 online version, March 2003 print version), have implications for tailoring chemotherapy, designing new cancer treatments, and understanding how to treat cancer in certain populations.



“The existence of two variants, or polymorphisms, of p53 isn’t new, but we’ve discovered that the variant type in each cell can influence its tumor-suppressor ability,” explains senior author Maureen Murphy, Ph.D., a molecular biologist in the pharmacology department of Fox Chase Cancer Center, Philadelphia, Pa.

When functioning properly, p53 polices cells for problems such as errant cellular growth, the hallmark of human cancer. If such harmful factors are present, p53 triggers the process of programmed cell death (known as apoptosis)-in effect, causing the “bad” cells to self-destruct. Alterations, or mutations, in this gene have been found in more than 60 percent of human cancers.


Murphy and her colleagues have known about the two p53 variants, but how the differences affect p53’s ability to suppress tumor development was not previously understood until now.

“People have one form or another of p53,” says Murphy. “The p53 variant containing the amino acid called arginine is better at killing out-of-control cells. The other p53 variant with the amino acid proline is less capable of stopping errant cells. When we asked if the two forms might function differently, the answer was a resounding yes.

“In terms of treating cancer, patients could potentially be typed for the kind of p53 they have, some day allowing physicians to tailor their therapy. If a patient has the arginine p53, which kills cells better, relatively less drugs might be needed for that person’s body to kill tumor cells. If another patient has the proline form, which is less active, relatively more drugs may be needed to fight the tumor.”

Although p53 variants have not received much attention from the biomedical community until now, epidemiologists have known that the proline form has an enhanced frequency in African Americans. This variant, which is less likely to set off programmed cell death, is more frequent in populations who live closer to the equator and have darker skin color. As a result, “p53 variants seem to differ according to ethnicity, and that might have implications for cancer treatment in different populations,” says Murphy.

The published research also redefines the function of p53. The p53 protein normally resides in the nucleus, and the way scientists have hypothesized its control of cell death is that it “turns on” the proteins that tell a cell to die or “turns off” the proteins that tell a cell to live. When the researchers couldn’t find a difference between the two forms with regard to activity inside the nucleus, they turned their attention to a little-studied area of p53 activity outside the nucleus—in the mitochondria, the energy storehouse of the cell.

“We looked at this and found a dramatic difference between the two forms,” recalls Murphy. They found that the arginine form, which is more efficient at killing cells, travels out of the nucleus better and into the mitochondria, where p53 functions to kill the cell.

Murphy adds, “Not only did we find a common polymorphism that influences tumor suppression, we also found that this seemingly obscure activity is at the center of how this protein kills cells.”

By bringing the mitochondrial pathway of cell death to the forefront of research, the investigators suggest that drugs could be designed to put p53 directly into the mitochondria or enable the cell to put it there. In the paper, they begin to test this hypothesis. They showed that if a drug is administered that prevents p53 from going to the mitochondria, then it inhibits the ability of p53 to kill a cell. Future efforts will focus on identifying drugs that enhance the ability of p53 to go to the mitochondria.


Fox Chase Cancer Center, one of the nation’s first comprehensive cancer centers designated by the National Cancer Institute in 1974, conducts basic and clinical research; programs of prevention, detection and treatment of cancer; and community outreach. For more information about Fox Chase activities, visit the Center’s web site at www.fccc.edu or call 1-888-FOX CHASE.

"The codon 72polymorphic variants of p53 demonstrate significant differences in apoptotic potential" Nature Genetics (Feb. 3, 2003 online version, March 2003 print version). http://press.nature.com.

This research was conducted equally by Patrick Dumont, a postdoctoral fellow in the Murphy lab, and Julie Leu, a postdoc in the lab of Donna L. George, from the Department of Genetics at the University of Pennsylvania School of Medicine. Anthony C. Della Pietra III from the Murphy lab also participated in the research.


Karen Mallet | EurekAlert!
Further information:
http://www.fccc.edu/
http://press.nature.com

More articles from Health and Medicine:

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Better equipped in the fight against lung cancer
16.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>