Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Suppressing immune system reverses otherwise untreatable case of blood disease

21.01.2003


Treatment with two medications that suppress the immune system, rituximab and cyclophosphamide, appears to have cured one woman of an otherwise untreatable case of the blood disease known as thrombotic thrombocytopenic purpura (TTP). The findings support the theory that TTP is an autoimmune disease, and not only provide insight into diagnosis and treatment, but also reveal clues about blood clotting and autoimmune diseases in general.



"In this particular patient who did not respond to standard therapy, immunosuppression seems to have been successful," says Morey A. Blinder, M.D., associate professor of medicine and of pathology and immunology at Washington University School of Medicine in St. Louis. "These results are promising for others suffering from similarly resistant cases of TTP."

Blinder led the study, in conjunction with J. Evan Sadler, M.D, Ph.D., professor of medicine and of biochemistry and molecular biophysics. Their findings appear in the Jan. 21 issue of the journal Annals of Internal Medicine.


TTP is a blood disorder that affects an estimated 3,000 Americans each year, most of whom are women of childbearing age. Prior to the early 1980s, the prognosis was grim: The risk of dying from complications of the disease such as heart attack or stroke was as high as 90 percent. And because the disease is so rare, it continues to be misdiagnosed and untreated.

Today, most patients who are diagnosed accurately with TTP are successfully treated with plasmapheresis, in which an individual’s blood is swapped for healthy blood in a daily process similar to dialysis for kidney failure. But plasmapheresis does not target the underlying problem, which is believed to be similar to autoimmune diseases such as lupus, in which the immune system attacks a person’s own tissues. Therefore, even with daily plasmapheresis, the disease returns in about 25 percent of patients.

In 2000, Sadler’s team, in collaboration with investigators at the University of Washington in Seattle, identified a protein in the bloodstream called von Willebrand factor-cleaving protease and found that it either is missing or abnormal in people with TTP, presumably as a result of disruption by the immune system. Without it, the protein called von Willebrand factor is not regulated and therefore sticks to itself, forming large clumps, or blood clots, that often lead to stroke or heart attack.

"The discovery of this protein really helps us understand the mechanism of blood clotting in general and how important von Willebrand factor is," says Blinder. "Also, we hope to use this knowledge to develop a definitive test for TTP so that it can be more easily diagnosed and more effectively treated. It also may be possible to genetically engineer the protein for infusion, similar to the use of insulin for diabetes."

To prevent the immune system from destroying or disrupting this essential cleaving protease, the Washington University team tested two drugs already shown to suppress the immune system. In October 2001, after 19 months of relapsing disease despite extensive plasmapheresis, the team gave one 42-year-old woman with severe TTP two drugs – rituximab and cyclophosphamide, both known anti-cancer drugs. Her symptoms and blood levels improved and continue to be stable to date.

"This may not be a public health issue like AIDS or breast cancer, but the fact that first this disease was almost always life-threatening and now may be curable is really important," says Blinder. "And now that we’re really beginning to understand the disease itself, it will help us diagnose and treat TTP and will provide insight into blood clotting and how immune diseases work in general."


###
Zheng X, Pallera AM, Goodnough LT, Sadler JE, Blinder MA. Remission of chronic thrombotic thrombocytopenic purpura after treatment with cyclophosphamide and rituximab. Annals of Internal Medicine, vol. 138, Jan. 21, 2003.

Funding from the National Institutes of Health and the Howard Hughes Medical Institute supported this research.

The full-time and volunteer faculty of Washington University School of Medicine are the physicians and surgeons of Barnes-Jewish and St. Louis Children’s hospitals. The School of Medicine is one of the leading medical research, teaching and patient-care institutions in the nation. Through its affiliations with Barnes-Jewish and St. Louis Children’s hospitals, the School of Medicine is linked to BJC HealthCare.

Gila Z. Reckess | EurekAlert!
Further information:
http://medinfo.wustl.edu/

More articles from Health and Medicine:

nachricht World first: Massive thrombosis removed during early pregnancy
20.07.2017 | Universitätsspital Bern

nachricht Therapy of preterm birth in sight?
19.07.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>