Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Pittsburgh study finds carbon monoxide has therapeutic benefits

20.01.2003


Exposing rats to low levels of carbon monoxide prevents arteriosclerosis and chronic organ rejection



Exposing rats to low levels of carbon monoxide (CO) prior to aorta transplantation prevents arteriosclerosis associated with chronic organ rejection and can also suppress stenosis after balloon-angioplasty-induced carotid artery injury, according to a study published in the Feb. 1 edition of Nature Medicine. The article is published online today.

"These findings demonstrate a significant protective role for CO in vascular injury and support its use as a therapeutic agent," according to study author Leo Otterbein, Ph.D., research assistant professor, University of Pittsburgh School of Medicine, division of pulmonary and critical care medicine.


The rats that received the aorta grafts were exposed to 250 parts per million (PPM) of CO immediately following transplantation and for the subsequent 56 days of the study. Those rats in the balloon injury portion of the study were exposed to the same PPM of CO for one hour prior to injury and then returned to room air for the subsequent 2 weeks.

As controls, researchers transplanted aortic segments from ten Norway rats to Lewis rats, none of which were exposed to CO. Arteriosclerotic lesions began to appear after 20-30 days and were significant by 50-60 days. Lesions were characterized by intimal hyperplasia (vessel wall thickening), an increase in smooth muscle cells and leukocyte accumulation in the transplanted aorta. These processes are indications of arteriosclerosis and limit the success of transplants and angioplasties in humans. In the rats exposed to CO, intimal hyperplasia was significantly reduced by 61 percent.

In the second group of rats, their carotid arteries developed intimal hyperplasia 14 days after balloon injury. Intimal hyperplasia in rats exposed to CO for only one hour prior to injury, was reduced by 74 percent over control rats exposed to air.

"Currently the best available treatment of clogged arteries is through angioplasty and a stent or via bypass surgery," said Brian S. Zuckerbraun, M.D., general surgery resident at the University of Pittsburgh School of Medicine and co-author of the study. "But these have their limitations and a significant failure rate. If you could pre-treat patients with CO it might result in a better long term outcome."

"Our research suggests that the protective effect of CO relies on its ability to block leukocyte infiltration/activation as well as small muscle cell proliferation," Dr. Otterbein said. "CO may prove to be beneficial in the treatment of a broad range of vascular diseases. The fact that a one-hour pre-exposure of a rat to low levels of CO markedly diminished the intimal proliferation that usually follows balloon injury, used here as a model of angioplasty, supports the use of CO clinically."

In the study, there were no observed negative effects of the CO exposure on the animals. According to Dr. Otterbein, studies are currently underway in a pig model.


Others involved in the research project at the University of Pittsburgh include Augustine Choi, M.D., chief of pulmonary, allergy and critical care medicine; Timothy Billiar, M.D., chairman of the department of surgery; Edith Tzeng, M.D., assistant professor of surgery in the division of vascular surgery; Ruiping Song, M.D., Ph.D., post doctoral fellow; and Fang Liu, technician. This study was done in collaboration with a team of researchers at Harvard Medical School.

The study was supported by grants from the National Institutes of Health, an Atorvastin Research Award, sponsored by Pfizer, American Heart Association, and the Ethicon-Society of University Surgeons Resident Research Award.

kr/01-15-03

CONTACT:
Frank Raczkiewicz
Jocelyn Uhl
PHONE: 412-647-3555
FAX: 412-624-3184
E-MAIL:
RaczkiewiczFA@upmc.edu
http://www.UhlJH@upmc.edu

Frank Raczkiewicz | EurekAlert!
Further information:
http://www.upmc.edu/

More articles from Health and Medicine:

nachricht Routing gene therapy directly into the brain
07.12.2017 | Boston Children's Hospital

nachricht New Hope for Cancer Therapies: Targeted Monitoring may help Improve Tumor Treatment
01.12.2017 | Berliner Institut für Gesundheitsforschung / Berlin Institute of Health (BIH)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

Im Focus: A transistor of graphene nanoribbons

Transistors based on carbon nanostructures: what sounds like a futuristic dream could be reality in just a few years' time. An international research team working with Empa has now succeeded in producing nanotransistors from graphene ribbons that are only a few atoms wide, as reported in the current issue of the trade journal "Nature Communications."

Graphene ribbons that are only a few atoms wide, so-called graphene nanoribbons, have special electrical properties that make them promising candidates for the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

Making fuel out of thick air

08.12.2017 | Life Sciences

Rules for superconductivity mirrored in 'excitonic insulator'

08.12.2017 | Information Technology

Smartphone case offers blood glucose monitoring on the go

08.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>