Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Herpes virus trashes detection mechanism to hide from immune system

16.01.2003


Herpes viruses are notorious for their ability to hide from the immune system and establish lifelong infections. Researchers at Washington University School of Medicine in St. Louis have discovered how one mouse herpes virus escapes detection. The study appears in the January issue of the journal Immunity.



"These findings not only provide a better understanding of viral infections," says study leader Ted H. Hansen, Ph.D., professor of genetics, "they also offer novel insights into basic cellular processes in the immune system."

Like police cars cruising a neighborhood, immune cells known as cytotoxic T cells patrol the body looking for signs of trouble, such as virus-infected cells.


Cells communicate with the immune system by displaying protein fragments on their surface, including viral proteins. When cytotoxic T cells find viral proteins on a cell’s surface, they destroy the cell and thereby eliminate the virus.

Molecules known as major histocompatibility complex class 1 (MHC class 1) are responsible for displaying the protein fragments, known as peptides, on the cell surface. Cells make fleets of MHC class 1 molecules, each of which is assembled from two separate pieces plus the peptide. After each MHC class 1 molecule is completed, it travels to the cell surface to display its peptide to passing immune cells.

"MHC class I is the body’s most important mechanism for fighting off most viral infections," says lead author Lonnie P. Lybarger, Ph.D., postdoctoral fellow in genetics. "Not surprisingly, herpes viruses have evolved ways to block that immune response."

Hansen, Lybarger and their colleagues used a mouse virus known as gamma2-herpesvirus to discover exactly how the virus does this. The virus is closely related to the human herpes virus associated with Kaposi’s sarcoma, a cancer of blood vessels that occurs in some people with AIDS.

Research has shown that cells assemble MHC class 1 molecules with the help of other molecules known as chaperones. In this study, the investigators found that in cells infected with gamma2-herpesvirus, a viral protein known as mK3 joins the chaperones as they prepare to assemble an MHC class 1 molecule.

Then, as assembly occurs, the mK3 protein makes a subtle change in the MHC class 1 molecule that marks it as waste. So instead of traveling to the cell surface as it should, the MHC class 1 molecule is shunted off to the side and destroyed.

"The finding that mK3 requires chaperone molecules to function and hides out with them came as a surprise," says Lybarger. "It represents a new strategy for blocking immune detection, and it suggests that there are probably other viral proteins that use host molecules to target MHC class 1."

The researchers are using gamma2-herpesvirus and the herpes virus associated with Kaposi’s sarcoma to identify some of those additional protein-protein interactions between virus and host.

Hansen attributes the success of this project to an effective collaboration between his laboratory, which specializes in the presentation of MHC class 1 molecules, and the virology laboratory of Herbert W. Virgin IV, M.D., Ph.D., professor of pathology and immunology and of molecular microbiology.


Lybarger L, Wang X, Harris MR, Virgin HW, Hansen TH. Virus subversion of the MHC class 1 peptide-loading complex. Immunity, January 2003.

Funding from the National Institute of Allergy and Infectious Diseases supported this research.

Darrell E. Ward | EurekAlert!
Further information:
http://medinfo.wustl.edu/

More articles from Health and Medicine:

nachricht NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures
17.11.2017 | National Institute of Standards and Technology (NIST)

nachricht High speed video recording precisely measures blood cell velocity
15.11.2017 | ITMO University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Heavy nitrogen molecules reveal planetary-scale tug-of-war

20.11.2017 | Earth Sciences

Taking a spin on plasma space tornadoes with NASA observations

20.11.2017 | Physics and Astronomy

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>