Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Herpes virus trashes detection mechanism to hide from immune system


Herpes viruses are notorious for their ability to hide from the immune system and establish lifelong infections. Researchers at Washington University School of Medicine in St. Louis have discovered how one mouse herpes virus escapes detection. The study appears in the January issue of the journal Immunity.

"These findings not only provide a better understanding of viral infections," says study leader Ted H. Hansen, Ph.D., professor of genetics, "they also offer novel insights into basic cellular processes in the immune system."

Like police cars cruising a neighborhood, immune cells known as cytotoxic T cells patrol the body looking for signs of trouble, such as virus-infected cells.

Cells communicate with the immune system by displaying protein fragments on their surface, including viral proteins. When cytotoxic T cells find viral proteins on a cell’s surface, they destroy the cell and thereby eliminate the virus.

Molecules known as major histocompatibility complex class 1 (MHC class 1) are responsible for displaying the protein fragments, known as peptides, on the cell surface. Cells make fleets of MHC class 1 molecules, each of which is assembled from two separate pieces plus the peptide. After each MHC class 1 molecule is completed, it travels to the cell surface to display its peptide to passing immune cells.

"MHC class I is the body’s most important mechanism for fighting off most viral infections," says lead author Lonnie P. Lybarger, Ph.D., postdoctoral fellow in genetics. "Not surprisingly, herpes viruses have evolved ways to block that immune response."

Hansen, Lybarger and their colleagues used a mouse virus known as gamma2-herpesvirus to discover exactly how the virus does this. The virus is closely related to the human herpes virus associated with Kaposi’s sarcoma, a cancer of blood vessels that occurs in some people with AIDS.

Research has shown that cells assemble MHC class 1 molecules with the help of other molecules known as chaperones. In this study, the investigators found that in cells infected with gamma2-herpesvirus, a viral protein known as mK3 joins the chaperones as they prepare to assemble an MHC class 1 molecule.

Then, as assembly occurs, the mK3 protein makes a subtle change in the MHC class 1 molecule that marks it as waste. So instead of traveling to the cell surface as it should, the MHC class 1 molecule is shunted off to the side and destroyed.

"The finding that mK3 requires chaperone molecules to function and hides out with them came as a surprise," says Lybarger. "It represents a new strategy for blocking immune detection, and it suggests that there are probably other viral proteins that use host molecules to target MHC class 1."

The researchers are using gamma2-herpesvirus and the herpes virus associated with Kaposi’s sarcoma to identify some of those additional protein-protein interactions between virus and host.

Hansen attributes the success of this project to an effective collaboration between his laboratory, which specializes in the presentation of MHC class 1 molecules, and the virology laboratory of Herbert W. Virgin IV, M.D., Ph.D., professor of pathology and immunology and of molecular microbiology.

Lybarger L, Wang X, Harris MR, Virgin HW, Hansen TH. Virus subversion of the MHC class 1 peptide-loading complex. Immunity, January 2003.

Funding from the National Institute of Allergy and Infectious Diseases supported this research.

Darrell E. Ward | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht NIH scientists describe potential antibody treatment for multidrug-resistant K. pneumoniae
14.03.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht Researchers identify key step in viral replication
13.03.2018 | University of Pittsburgh Schools of the Health Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>