Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Herpes virus trashes detection mechanism to hide from immune system

16.01.2003


Herpes viruses are notorious for their ability to hide from the immune system and establish lifelong infections. Researchers at Washington University School of Medicine in St. Louis have discovered how one mouse herpes virus escapes detection. The study appears in the January issue of the journal Immunity.



"These findings not only provide a better understanding of viral infections," says study leader Ted H. Hansen, Ph.D., professor of genetics, "they also offer novel insights into basic cellular processes in the immune system."

Like police cars cruising a neighborhood, immune cells known as cytotoxic T cells patrol the body looking for signs of trouble, such as virus-infected cells.


Cells communicate with the immune system by displaying protein fragments on their surface, including viral proteins. When cytotoxic T cells find viral proteins on a cell’s surface, they destroy the cell and thereby eliminate the virus.

Molecules known as major histocompatibility complex class 1 (MHC class 1) are responsible for displaying the protein fragments, known as peptides, on the cell surface. Cells make fleets of MHC class 1 molecules, each of which is assembled from two separate pieces plus the peptide. After each MHC class 1 molecule is completed, it travels to the cell surface to display its peptide to passing immune cells.

"MHC class I is the body’s most important mechanism for fighting off most viral infections," says lead author Lonnie P. Lybarger, Ph.D., postdoctoral fellow in genetics. "Not surprisingly, herpes viruses have evolved ways to block that immune response."

Hansen, Lybarger and their colleagues used a mouse virus known as gamma2-herpesvirus to discover exactly how the virus does this. The virus is closely related to the human herpes virus associated with Kaposi’s sarcoma, a cancer of blood vessels that occurs in some people with AIDS.

Research has shown that cells assemble MHC class 1 molecules with the help of other molecules known as chaperones. In this study, the investigators found that in cells infected with gamma2-herpesvirus, a viral protein known as mK3 joins the chaperones as they prepare to assemble an MHC class 1 molecule.

Then, as assembly occurs, the mK3 protein makes a subtle change in the MHC class 1 molecule that marks it as waste. So instead of traveling to the cell surface as it should, the MHC class 1 molecule is shunted off to the side and destroyed.

"The finding that mK3 requires chaperone molecules to function and hides out with them came as a surprise," says Lybarger. "It represents a new strategy for blocking immune detection, and it suggests that there are probably other viral proteins that use host molecules to target MHC class 1."

The researchers are using gamma2-herpesvirus and the herpes virus associated with Kaposi’s sarcoma to identify some of those additional protein-protein interactions between virus and host.

Hansen attributes the success of this project to an effective collaboration between his laboratory, which specializes in the presentation of MHC class 1 molecules, and the virology laboratory of Herbert W. Virgin IV, M.D., Ph.D., professor of pathology and immunology and of molecular microbiology.


Lybarger L, Wang X, Harris MR, Virgin HW, Hansen TH. Virus subversion of the MHC class 1 peptide-loading complex. Immunity, January 2003.

Funding from the National Institute of Allergy and Infectious Diseases supported this research.

Darrell E. Ward | EurekAlert!
Further information:
http://medinfo.wustl.edu/

More articles from Health and Medicine:

nachricht Custom-tailored strategy against glioblastomas
26.09.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New leukemia treatment offers hope
23.09.2016 | King Abdullah University of Science and Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

 
Latest News

New Multiferroic Materials from Building Blocks

29.09.2016 | Materials Sciences

Silicon Fluorescent Material Developed Enabling Observations under a Bright “Biological Optical Window”

29.09.2016 | Materials Sciences

X-shape Bio-inspired Structures

29.09.2016 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>