Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Without water, the body will shut down its need to ingest food

18.12.2002


A new study identifies sensors in the gastrointestinal tract that signals the body that food ingestion is no longer required



Bethesda, MD – According to the United Nations, 14 African countries now face water scarcity or water stress. By the year 2025, experts agree that eleven more countries will join the list and half the world will live with water stress.

The consequences of water drought can be terrible – a loss of livestock and crops can lead to overall starvation of a nation’s population. International relief agencies may respond with necessary food supplies. But their largesse in offering food may be for naught, for a new study suggests that without water, the body’s physiology will cause the body to involuntarily reduce feeding, leading to dehydration or anorexia. The findings suggest that deprivation is mediated by a sensor located in either the gastrointestinal tract or in the mesenteric veins draining the gut. In the absence of drinking water, signals from this sensor provoke the early termination of a meal.


The authors of the study, "Reduced Feeding During Water Deprivation Depends on Hydration of the Gut," are Guus H. M. Schoorlemmer and Mark D. Evered, both in the Department of Physiology, College of Medicine, University of Saskatchewan, Saskatoon, Canada. Their findings are published in the November 2002 edition of the American Journal of Physiology – Regulatory, Integrative and Comparative Physiology, a publication of the American Physiological Society (APS).

Background

Humans join rats, dogs, cows, camels, and other mammals in reducing food intake during water deprivation. This inhibition of eating assists body fluid regulation in two ways. First, there is normally a large volume of osmotically sequestered water in the gut. Inhibition of feeding allows absorption of this water. Second, the reduced solute load or dissolution of food reduces urinary water loss.

There are several ways in which water deprivation might inhibit food intake. First, drinking is normally associated with eating and disrupting that pattern might inhibit food intake. Second, water deprivation causes a dry mouth, making eating more difficult, especially when the period of water deprivation is long and the food is dry. Third, osmoreceptors (a receptor in the central nervous system that receives stimulus from the blood) or other detectors of body fluid status in the brain, circulation, or gut may be involved. In the rat, various stimuli known to cause thirst and antidiuresis also inhibit feeding, including injection of hypertonic solutions into the gastrointestinal tract or peritoneal cavity, injection of hyperoncotic colloid under the skin, and injection of angiotensin in the brain.

The research team designed a series of experiments to investigate how reducing water consumption reduces food intake. The first step was to measure the effect of short periods of water deprivation on food intake and eating pattern. To investigate the role of plasma tonicity in feeding during water deprivation, they compared changes in plasma tonicity caused by ingestion of food in the presence and absence of drinking water. They then investigated the effect of changes in plasma tonicity, induced by intravenous infusion of hypertonic and hypotonic solutions, on feeding in the absence of drinking water. To examine whether drinking fluids is necessary for normal food intake, the team deprived rats of drinking water overnight while slowly infusing the water these rats normally drank into the stomach.

Methodology

In freely feeding Long-Evans rats, meals were separated by intervals of one hour during the dark period and four hours during the light period. To obtain the meal pattern during water deprivation, they measured food intake every 15 minutes by briefly removing the food hopper, weighing it, and returning it to the cage. Rats were anesthetized and given a postoperative subcutaneous injection of the analgesic buprenorphine-hydrochloride. Tubes were inserted in the vena cava, portal vein, gastric cavity, and intestine, all in a single session. Rats were allowed at least ten days to recover. Experiments began only after rats had regained preoperative body weight.

Infusions were done in the rat’s home cage unless specified differently. The polyethylene infusion tubing was connected to the elbow on the rat’s back and led through the top of the cage. Sterile distilled water or 0.3 M NaCl solution was infused with a disposable syringe mounted in a calibrated pump. For long infusions, the tubing was protected with a metal spring and was connected through a low-friction watertight fluid swivel.

Five experiments were then conducted as follows:

Experiment 1: Analysis of feeding during water deprivation.
Food intake was measured in 11 rats for 7.5 hours, starting at the beginning of the dark period, because rats normally do most of their eating during the dark period. Every 15 minutes the food hopper was removed from the cage, weighed, and returned to the cage. Drinking water was not available during the test period in six rats, but the other rats were allowed to drink. Two days later the experiment was repeated, but the treatments were reversed.

Experiment 2: Effect of the presence of drinking water on changes in plasma tonicity and blood volume induced by eating.
Because it is difficult to take blood samples in spontaneously feeding rats without interrupting feeding, especially in the dark, we took blood samples from rats that had been food deprived and allowed the rats to eat a normal-sized meal.

Experiment 3: Effect of rapid intravenous infusion of water or 0.3 M NaCl on food intake.


Eight rats with a cannula in the thoracic vena cava were tested for the sensitivity of feeding to changes in plasma tonicity. To measure sensitivity of feeding to a fall in plasma tonicity, these rats were deprived of drinking water for 18 hours. Then food was removed, cannulas were connected, and sterile water was infused into the vena cava at a rate of 1.1 ml/min. Food (but not drinking water) was returned six minutes after the end of the infusion.

Experiment 4: Effect of slow infusions of water in the stomach of rats not allowed to drink.
To determine whether the act of drinking is necessary for normal food intake, eight rats with gastric cannulas were deprived of water. During this period, water was infused intragastrically.

Experiment 5: Effect of infusion of water in various body locations on food intake of rats not allowed to drink.
Water was infused in various locations throughout the body to locate the sensors that mediate the effect of hydration on feeding.

Results

The researchers found that:

· Water deprivation reduced meal size, including the first meal.
· Intravenous infusions of 0.3 M NaCl that increased plasma tonicity and sodium concentration to levels greater than those seen after eating caused little or no reduction in food intake.

· Feeding in rats not allowed to drink was restored when amounts of water similar to that normally drunk were infused slowly into the stomach, jejunum, or cecum but not when the water was infused into the vena cava or portal vein.

Conclusions

The findings show that sensors responsive to hypertonicity of the gastrointestinal tract can inhibit feeding. The researchers believe that sensors specifically responsible for the reduction in food intake during water deprivation to be a subpopulation of these located in the proximal gut, because this is the region most likely to be affected by the ingestion of normal size drinks. These sensors are probably in the stomach, in the first part of the small intestine, or in the vasculature that drains these areas, before the liver. In the absence of drinking water, signals from these sensors provoke an early termination of the meal.

These findings are consistent with the view that postingestive, preabsorptive, negative-feedback information from the gut has a primary and direct role in the control of feeding. They suggest that hydration of the gastrointestinal tract is one of the important variables monitored by the gut mucosal receptors and that the information is carried by afferent fibers to the caudal brain stem rather than through changes in the tonicity of the circulation monitored by forebrain or other nonsplanchnic sites. Information from splanchnic sensors monitoring gut hydration may also play a role in the control of drinking, release of vasopressin and oxytocin, salt excretion, and gastric emptying.

Throughout the remainder of this century, the world’s population will be plagued by global warming and continuous drought. Ensuring that the population of the affected countries is not subject to starvation will be a top priority for the international community. These findings will contribute to the development of an effective strategy.


Source: November 2002 edition of the American Journal of Physiology – Regulatory, Integrative and Comparative Physiology, a publication of the American Physiological Society (APS).

The American Physiological Society (APS) was founded in 1887 to foster basic and applied science, much of it relating to human health. The Bethesda, MD-based Society has more than 10,000 members and publishes 3,800 articles in its 14 peer-reviewed journals every year.

Donna Krupa | EurekAlert!
Further information:
http://www.faseb.org/aps/

More articles from Health and Medicine:

nachricht Custom-tailored strategy against glioblastomas
26.09.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New leukemia treatment offers hope
23.09.2016 | King Abdullah University of Science and Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

 
Latest News

New imaging technique in Alzheimer’s disease - opens up possibilities for new drug development

28.09.2016 | Medical Engineering

Innovate coating extends the life of materials for industrial use

28.09.2016 | Materials Sciences

Blockchain Set to Transform the Financial Services Market

28.09.2016 | Business and Finance

VideoLinks
B2B-VideoLinks
More VideoLinks >>>