Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Satellite images predict hantaviral transmission risk

03.12.2002


Researchers from the Johns Hopkins Bloomberg School of Public Health and other institutions report that satellite imagery could be used to determine areas at high-risk for exposure to Sin Nombre virus (SNV), a rodent-born disease that causes the often fatal hantaviral pulmonary syndrome (HPS) in humans. According to the researchers, satellite imaging detects the distinct environmental conditions that may serve as a refuge for the disease-carrying deer mice. Higher populations of infected deer mice increase the risk of HPS to humans. Their findings are published in the study, “Satellite Imagery Characterizes Local Animal Reservoir Populations of Sin Nombre Virus in Southwestern United States,” which will appear in the December 2, 2002, issue of the Proceedings of the National Academy of Sciences.



Gregory E. Glass, PhD, professor of molecular microbiology and immunology in the Johns Hopkins Bloomberg School of Public Health, said, “This is an important finding because, at a practical level, it provides a way to monitor the environment for the risk of an infectious disease before an outbreak occurs. At a more basic level it gives us a way to better understand why outbreaks happen when and where they do.”

Before satellite imaging was used to predict high-risk areas, the only SNV tracking method was through rodent sampling or follow-up to human cases of disease. Johns Hopkins Bloomberg School of Public Health researchers used Landsat Thematic Mapper (TM) satellite data from 1997 and 1998 to identify environments associated with human risk of HPS caused by rodent SNV. LANDSAT 5 TM imagery was obtained for a study area in the southwestern United States where HPS was initially recognized in 1993. The images were processed and HPS risk maps were generated. Logistic regression was used to estimate risk using the digital numbers in each of the three TM bands. The researchers teamed with workers from the University of New Mexico, the Centers for Disease Control and Prevention, and the IBM T.J. Watson Research Center to validate the analysis. Field and laboratory studies of collected rodents were performed in 1998 and 1999. The sample consisted of 15,042 rodents. Researchers tested the deer mice for SNV and then compared their findings to their satellite projected images.


The prevalence of SNV infection in deer mouse populations varied among sites. Researchers found that high-risk sites were ecologically distinct from low-risk sites and SNV infection was prevalent among deer mice in high-risk areas. Woody plants, such as Ponderosa pine and Pinon pine, dominated high-risk sites. Low-risk sites usually contained snakeweed, saltbush, Creosote bush, sagebrush, tumbleweed, and mesquite.

Dr. Glass said, “Future studies could characterize the ecological dynamics of local environmental conditions and monitor SNV transmission in deer mouse populations and then compare theses sites with lower-risk locations. This approach will help identify the environmental determinants of SNV persistence in the environment. The sites may provide important insights into identifying the environmental conditions that lead to increased levels of SNV in reservoir populations and the subsequent increased risk of human disease.”


####
Joshua B. Fine, DVM, and Timothy M. Shields, MA, with the School’s Department of Molecular Microbiology and Immunology, and Jonathan A. Patz, MD, MPH, with the School’s Department of Environmental Health Sciences, co-authored the study.

Additional co-authors were Terry L. Yates, John B. Kendall, Andrew G. Hope, Cheryl A. Parmenter, C.J. Peters, Thomas G. Ksiazek, Chung-Sheng Li, and James N. Mills.

Research was supported by an Intergovernmental Personnel Agreement from the Centers for Disease Control and NASA. Additional support was received from a cooperative agreement from the U.S. Environmental Protection Agency. Field studies were supported by NOAA and the Museum of Southwestern Biology.

Information on automatic e-mail delivery of science and medical news releases from Johns Hopkins University is available at www.jhu.edu/news_info/news/listserv.html

Kenna L. Brigham | EurekAlert!
Further information:
http://www.jhsph.edu
http://www.jhu.edu/news_info/news/listserv.html

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>